⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 t3bv_8.c

📁 快速傅立叶变换库函数
💻 C
字号:
/* * Copyright (c) 2003, 2006 Matteo Frigo * Copyright (c) 2003, 2006 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Oct  4 10:27:51 EDT 2008 */#include "codelet-dft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_twiddle_c -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3bv_8 -include t3b.h -sign 1 *//* * This function contains 37 FP additions, 32 FP multiplications, * (or, 27 additions, 22 multiplications, 10 fused multiply/add), * 43 stack variables, and 16 memory accesses *//* * Generator Id's :  * $Id: algsimp.ml,v 1.9 2006-02-12 23:34:12 athena Exp $ * $Id: fft.ml,v 1.4 2006-01-05 03:04:27 stevenj Exp $ * $Id: gen_twiddle_c.ml,v 1.14 2006-02-12 23:34:12 athena Exp $ */#include "t3b.h"static const R *t3bv_8(R *ri, R *ii, const R *W, stride ios, INT m, INT dist){     DVK(KP707106781, +0.707106781186547524400844362104849039284835938);     INT i;     R *x;     x = ii;     for (i = m; i > 0; i = i - VL, x = x + (VL * dist), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(ios)) {	  V T2, T3, Tb, T1, T5, Tn, Tq, T8, Td, T4, Ta, Tp, Tg, Ti, T9;	  T2 = LDW(&(W[0]));	  T3 = LDW(&(W[TWVL * 2]));	  Tb = LDW(&(W[TWVL * 4]));	  T1 = LD(&(x[0]), dist, &(x[0]));	  T5 = LD(&(x[WS(ios, 4)]), dist, &(x[0]));	  Tn = LD(&(x[WS(ios, 2)]), dist, &(x[0]));	  Tq = LD(&(x[WS(ios, 6)]), dist, &(x[0]));	  T8 = LD(&(x[WS(ios, 1)]), dist, &(x[WS(ios, 1)]));	  Td = LD(&(x[WS(ios, 5)]), dist, &(x[WS(ios, 1)]));	  T4 = VZMUL(T2, T3);	  Ta = VZMULJ(T2, T3);	  Tp = VZMULJ(T2, Tb);	  Tg = LD(&(x[WS(ios, 7)]), dist, &(x[WS(ios, 1)]));	  Ti = LD(&(x[WS(ios, 3)]), dist, &(x[WS(ios, 1)]));	  T9 = VZMUL(T2, T8);	  {	       V T6, To, Tc, Tr, Th, Tj;	       T6 = VZMUL(T4, T5);	       To = VZMUL(Ta, Tn);	       Tc = VZMULJ(Ta, Tb);	       Tr = VZMUL(Tp, Tq);	       Th = VZMUL(Tb, Tg);	       Tj = VZMUL(T3, Ti);	       {		    V Tx, T7, Te, Ts, Ty, Tk, TB;		    Tx = VADD(T1, T6);		    T7 = VSUB(T1, T6);		    Te = VZMUL(Tc, Td);		    Ts = VSUB(To, Tr);		    Ty = VADD(To, Tr);		    Tk = VSUB(Th, Tj);		    TB = VADD(Th, Tj);		    {			 V Tf, TA, Tz, TD;			 Tf = VSUB(T9, Te);			 TA = VADD(T9, Te);			 Tz = VSUB(Tx, Ty);			 TD = VADD(Tx, Ty);			 {			      V TC, TE, Tl, Tt;			      TC = VSUB(TA, TB);			      TE = VADD(TA, TB);			      Tl = VADD(Tf, Tk);			      Tt = VSUB(Tf, Tk);			      {				   V Tu, Tw, Tm, Tv;				   ST(&(x[0]), VADD(TD, TE), dist, &(x[0]));				   ST(&(x[WS(ios, 4)]), VSUB(TD, TE), dist, &(x[0]));				   ST(&(x[WS(ios, 2)]), VFMAI(TC, Tz), dist, &(x[0]));				   ST(&(x[WS(ios, 6)]), VFNMSI(TC, Tz), dist, &(x[0]));				   Tu = VFNMS(LDK(KP707106781), Tt, Ts);				   Tw = VFMA(LDK(KP707106781), Tt, Ts);				   Tm = VFNMS(LDK(KP707106781), Tl, T7);				   Tv = VFMA(LDK(KP707106781), Tl, T7);				   ST(&(x[WS(ios, 1)]), VFMAI(Tw, Tv), dist, &(x[WS(ios, 1)]));				   ST(&(x[WS(ios, 7)]), VFNMSI(Tw, Tv), dist, &(x[WS(ios, 1)]));				   ST(&(x[WS(ios, 5)]), VFMAI(Tu, Tm), dist, &(x[WS(ios, 1)]));				   ST(&(x[WS(ios, 3)]), VFNMSI(Tu, Tm), dist, &(x[WS(ios, 1)]));			      }			 }		    }	       }	  }     }     return W;}static const tw_instr twinstr[] = {     VTW(1),     VTW(3),     VTW(7),     {TW_NEXT, VL, 0}};static const ct_desc desc = { 8, "t3bv_8", twinstr, &GENUS, {27, 22, 10, 0}, 0, 0, 0 };void X(codelet_t3bv_8) (planner *p) {     X(kdft_dit_register) (p, t3bv_8, &desc);}#else				/* HAVE_FMA *//* Generated by: ../../../genfft/gen_twiddle_c -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3bv_8 -include t3b.h -sign 1 *//* * This function contains 37 FP additions, 24 FP multiplications, * (or, 37 additions, 24 multiplications, 0 fused multiply/add), * 31 stack variables, and 16 memory accesses *//* * Generator Id's :  * $Id: algsimp.ml,v 1.9 2006-02-12 23:34:12 athena Exp $ * $Id: fft.ml,v 1.4 2006-01-05 03:04:27 stevenj Exp $ * $Id: gen_twiddle_c.ml,v 1.14 2006-02-12 23:34:12 athena Exp $ */#include "t3b.h"static const R *t3bv_8(R *ri, R *ii, const R *W, stride ios, INT m, INT dist){     DVK(KP707106781, +0.707106781186547524400844362104849039284835938);     INT i;     R *x;     x = ii;     for (i = m; i > 0; i = i - VL, x = x + (VL * dist), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(ios)) {	  V T1, T4, T5, Tp, T6, T7, Tj;	  T1 = LDW(&(W[0]));	  T4 = LDW(&(W[TWVL * 2]));	  T5 = VZMULJ(T1, T4);	  Tp = VZMUL(T1, T4);	  T6 = LDW(&(W[TWVL * 4]));	  T7 = VZMULJ(T5, T6);	  Tj = VZMULJ(T1, T6);	  {	       V Ts, Tx, Tm, Ty, Ta, TA, Tf, TB, To, Tr, Tq;	       To = LD(&(x[0]), dist, &(x[0]));	       Tq = LD(&(x[WS(ios, 4)]), dist, &(x[0]));	       Tr = VZMUL(Tp, Tq);	       Ts = VSUB(To, Tr);	       Tx = VADD(To, Tr);	       {		    V Ti, Tl, Th, Tk;		    Th = LD(&(x[WS(ios, 2)]), dist, &(x[0]));		    Ti = VZMUL(T5, Th);		    Tk = LD(&(x[WS(ios, 6)]), dist, &(x[0]));		    Tl = VZMUL(Tj, Tk);		    Tm = VSUB(Ti, Tl);		    Ty = VADD(Ti, Tl);	       }	       {		    V T3, T9, T2, T8;		    T2 = LD(&(x[WS(ios, 1)]), dist, &(x[WS(ios, 1)]));		    T3 = VZMUL(T1, T2);		    T8 = LD(&(x[WS(ios, 5)]), dist, &(x[WS(ios, 1)]));		    T9 = VZMUL(T7, T8);		    Ta = VSUB(T3, T9);		    TA = VADD(T3, T9);	       }	       {		    V Tc, Te, Tb, Td;		    Tb = LD(&(x[WS(ios, 7)]), dist, &(x[WS(ios, 1)]));		    Tc = VZMUL(T6, Tb);		    Td = LD(&(x[WS(ios, 3)]), dist, &(x[WS(ios, 1)]));		    Te = VZMUL(T4, Td);		    Tf = VSUB(Tc, Te);		    TB = VADD(Tc, Te);	       }	       {		    V Tz, TC, TD, TE;		    Tz = VSUB(Tx, Ty);		    TC = VBYI(VSUB(TA, TB));		    ST(&(x[WS(ios, 6)]), VSUB(Tz, TC), dist, &(x[0]));		    ST(&(x[WS(ios, 2)]), VADD(Tz, TC), dist, &(x[0]));		    TD = VADD(Tx, Ty);		    TE = VADD(TA, TB);		    ST(&(x[WS(ios, 4)]), VSUB(TD, TE), dist, &(x[0]));		    ST(&(x[0]), VADD(TD, TE), dist, &(x[0]));		    {			 V Tn, Tv, Tu, Tw, Tg, Tt;			 Tg = VMUL(LDK(KP707106781), VSUB(Ta, Tf));			 Tn = VBYI(VSUB(Tg, Tm));			 Tv = VBYI(VADD(Tm, Tg));			 Tt = VMUL(LDK(KP707106781), VADD(Ta, Tf));			 Tu = VSUB(Ts, Tt);			 Tw = VADD(Ts, Tt);			 ST(&(x[WS(ios, 3)]), VADD(Tn, Tu), dist, &(x[WS(ios, 1)]));			 ST(&(x[WS(ios, 7)]), VSUB(Tw, Tv), dist, &(x[WS(ios, 1)]));			 ST(&(x[WS(ios, 5)]), VSUB(Tu, Tn), dist, &(x[WS(ios, 1)]));			 ST(&(x[WS(ios, 1)]), VADD(Tv, Tw), dist, &(x[WS(ios, 1)]));		    }	       }	  }     }     return W;}static const tw_instr twinstr[] = {     VTW(1),     VTW(3),     VTW(7),     {TW_NEXT, VL, 0}};static const ct_desc desc = { 8, "t3bv_8", twinstr, &GENUS, {37, 24, 0, 0}, 0, 0, 0 };void X(codelet_t3bv_8) (planner *p) {     X(kdft_dit_register) (p, t3bv_8, &desc);}#endif				/* HAVE_FMA */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -