📄 malloc5.test
字号:
# 2005 November 30## The author disclaims copyright to this source code. In place of# a legal notice, here is a blessing:## May you do good and not evil.# May you find forgiveness for yourself and forgive others.# May you share freely, never taking more than you give.##***********************************************************************## This file contains test cases focused on the two memory-management APIs, # sqlite3_soft_heap_limit() and sqlite3_release_memory().## Prior to version 3.6.2, calling sqlite3_release_memory() or exceeding# the configured soft heap limit could cause sqlite to upgrade database # locks and flush dirty pages to the file system. As of 3.6.2, this is# no longer the case. In version 3.6.2, sqlite3_release_memory() only# reclaims clean pages. This test file has been updated accordingly.## $Id: malloc5.test,v 1.20 2008/08/27 16:38:57 danielk1977 Exp $set testdir [file dirname $argv0]source $testdir/tester.tclsource $testdir/malloc_common.tcldb close# Only run these tests if memory debugging is turned on.#if {!$MEMDEBUG} { puts "Skipping malloc5 tests: not compiled with -DSQLITE_MEMDEBUG..." finish_test return}# Skip these tests if OMIT_MEMORY_MANAGEMENT was defined at compile time.ifcapable !memorymanage { finish_test return}sqlite3_soft_heap_limit 0sqlite3 db test.dbdo_test malloc5-1.1 { # Simplest possible test. Call sqlite3_release_memory when there is exactly # one unused page in a single pager cache. The page cannot be freed, as # it is dirty. So sqlite3_release_memory() returns 0. # execsql { PRAGMA auto_vacuum=OFF; BEGIN; CREATE TABLE abc(a, b, c); } sqlite3_release_memory} {0}do_test malloc5-1.2 { # Test that the transaction started in the above test is still active. # The lock on the database file should not have been upgraded (this was # not the case before version 3.6.2). # sqlite3 db2 test.db execsql { SELECT * FROM sqlite_master } db2} {}do_test malloc5-1.3 { # Call [sqlite3_release_memory] when there is exactly one unused page # in the cache belonging to db2. # set ::pgalloc [sqlite3_release_memory] expr $::pgalloc > 0} {1}do_test malloc5-1.4 { # Commit the transaction and open a new one. Read 1 page into the cache. # Because the page is not dirty, it is eligible for collection even # before the transaction is concluded. # execsql { COMMIT; BEGIN; SELECT * FROM abc; } sqlite3_release_memory} $::pgallocdo_test malloc5-1.5 { # Conclude the transaction opened in the previous [do_test] block. This # causes another page (page 1) to become eligible for recycling. # execsql { COMMIT } sqlite3_release_memory} $::pgallocdo_test malloc5-1.6 { # Manipulate the cache so that it contains two unused pages. One requires # a journal-sync to free, the other does not. db2 close execsql { BEGIN; SELECT * FROM abc; CREATE TABLE def(d, e, f); } sqlite3_release_memory 500} $::pgallocdo_test malloc5-1.7 { # Database should not be locked this time. sqlite3 db2 test.db catchsql { SELECT * FROM abc } db2} {0 {}}do_test malloc5-1.8 { # Try to release another block of memory. This will fail as the only # pages currently in the cache are dirty (page 3) or pinned (page 1). db2 close sqlite3_release_memory 500} 0do_test malloc5-1.8 { # Database is still not locked. # sqlite3 db2 test.db catchsql { SELECT * FROM abc } db2} {0 {}}do_test malloc5-1.9 { execsql { COMMIT; }} {}do_test malloc5-2.1 { # Put some data in tables abc and def. Both tables are still wholly # contained within their root pages. execsql { INSERT INTO abc VALUES(1, 2, 3); INSERT INTO abc VALUES(4, 5, 6); INSERT INTO def VALUES(7, 8, 9); INSERT INTO def VALUES(10,11,12); }} {}do_test malloc5-2.2 { # Load the root-page for table def into the cache. Then query table abc. # Halfway through the query call sqlite3_release_memory(). The goal of this # test is to make sure we don't free pages that are in use (specifically, # the root of table abc). sqlite3_release_memory set nRelease 0 execsql { BEGIN; SELECT * FROM def; } set data [list] db eval {SELECT * FROM abc} { incr nRelease [sqlite3_release_memory] lappend data $a $b $c } execsql { COMMIT; } list $nRelease $data} [list $pgalloc [list 1 2 3 4 5 6]]do_test malloc5-3.1 { # Simple test to show that if two pagers are opened from within this # thread, memory is freed from both when sqlite3_release_memory() is # called. execsql { BEGIN; SELECT * FROM abc; } execsql { SELECT * FROM sqlite_master; BEGIN; SELECT * FROM def; } db2 sqlite3_release_memory} [expr $::pgalloc * 2]do_test malloc5-3.2 { concat \ [execsql {SELECT * FROM abc; COMMIT}] \ [execsql {SELECT * FROM def; COMMIT} db2]} {1 2 3 4 5 6 7 8 9 10 11 12}db2 closeputs "Highwater mark: [sqlite3_memory_highwater]"# The following two test cases each execute a transaction in which # 10000 rows are inserted into table abc. The first test case is used# to ensure that more than 1MB of dynamic memory is used to perform# the transaction. ## The second test case sets the "soft-heap-limit" to 100,000 bytes (0.1 MB)# and tests to see that this limit is not exceeded at any point during # transaction execution.## Before executing malloc5-4.* we save the value of the current soft heap # limit in variable ::soft_limit. The original value is restored after # running the tests.#set ::soft_limit [sqlite3_soft_heap_limit -1]execsql {PRAGMA cache_size=2000}do_test malloc5-4.1 { execsql {BEGIN;} execsql {DELETE FROM abc;} for {set i 0} {$i < 10000} {incr i} { execsql "INSERT INTO abc VALUES($i, $i, '[string repeat X 100]');" } execsql {COMMIT;} sqlite3_release_memory sqlite3_memory_highwater 1 execsql {SELECT * FROM abc} set nMaxBytes [sqlite3_memory_highwater 1] puts -nonewline " (Highwater mark: $nMaxBytes) " expr $nMaxBytes > 1000000} {1}do_test malloc5-4.2 { sqlite3_release_memory sqlite3_soft_heap_limit 100000 sqlite3_memory_highwater 1 execsql {SELECT * FROM abc} set nMaxBytes [sqlite3_memory_highwater 1] puts -nonewline " (Highwater mark: $nMaxBytes) " expr $nMaxBytes <= 100000} {1}do_test malloc5-4.3 { # Check that the content of table abc is at least roughly as expected. execsql { SELECT count(*), sum(a), sum(b) FROM abc; }} [list 10000 [expr int(10000.0 * 4999.5)] [expr int(10000.0 * 4999.5)]]# Restore the soft heap limit.sqlite3_soft_heap_limit $::soft_limit# Test that there are no problems calling sqlite3_release_memory when# there are open in-memory databases.## At one point these tests would cause a seg-fault.#do_test malloc5-5.1 { db close sqlite3 db :memory: execsql { BEGIN; CREATE TABLE abc(a, b, c); INSERT INTO abc VALUES('abcdefghi', 1234567890, NULL); INSERT INTO abc SELECT * FROM abc; INSERT INTO abc SELECT * FROM abc; INSERT INTO abc SELECT * FROM abc; INSERT INTO abc SELECT * FROM abc; INSERT INTO abc SELECT * FROM abc; INSERT INTO abc SELECT * FROM abc; INSERT INTO abc SELECT * FROM abc; } sqlite3_release_memory} 0do_test malloc5-5.2 { sqlite3_soft_heap_limit 5000 execsql { COMMIT; PRAGMA temp_store = memory; SELECT * FROM abc ORDER BY a; } expr 1} {1}sqlite3_soft_heap_limit $::soft_limit#-------------------------------------------------------------------------# The following test cases (malloc5-6.*) test the new global LRU list# used to determine the pages to recycle when sqlite3_release_memory is# called and there is more than one pager open.#proc nPage {db} { set bt [btree_from_db $db] array set stats [btree_pager_stats $bt] set stats(page)}db closefile delete -force test.db test.db-journal test2.db test2.db-journal# This block of test-cases (malloc5-6.1.*) prepares two database files# for the subsequent tests.do_test malloc5-6.1.1 { sqlite3 db test.db execsql { PRAGMA page_size=1024; PRAGMA default_cache_size=10; } execsql { PRAGMA temp_store = memory; BEGIN; CREATE TABLE abc(a PRIMARY KEY, b, c); INSERT INTO abc VALUES(randstr(50,50), randstr(75,75), randstr(100,100)); INSERT INTO abc SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; INSERT INTO abc SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; INSERT INTO abc SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; INSERT INTO abc SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; INSERT INTO abc SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; INSERT INTO abc SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; COMMIT; } copy_file test.db test2.db sqlite3 db2 test2.db list \ [expr ([file size test.db]/1024)>20] [expr ([file size test2.db]/1024)>20]} {1 1}do_test malloc5-6.1.2 { list [execsql {PRAGMA cache_size}] [execsql {PRAGMA cache_size} db2]} {10 10}do_test malloc5-6.2.1 {breakpoint execsql {SELECT * FROM abc} db2 execsql {SELECT * FROM abc} db expr [nPage db] + [nPage db2]} {20}do_test malloc5-6.2.2 { # If we now try to reclaim some memory, it should come from the db2 cache. sqlite3_release_memory 3000 expr [nPage db] + [nPage db2]} {17}do_test malloc5-6.2.3 { # Access the db2 cache again, so that all the db2 pages have been used # more recently than all the db pages. Then try to reclaim 3000 bytes. # This time, 3 pages should be pulled from the db cache. execsql { SELECT * FROM abc } db2 sqlite3_release_memory 3000 expr [nPage db] + [nPage db2]} {17}do_test malloc5-6.3.1 { # Now open a transaction and update 2 pages in the db2 cache. Then # do a SELECT on the db cache so that all the db pages are more recently # used than the db2 pages. When we try to free memory, SQLite should # free the non-dirty db2 pages, then the db pages, then finally use # sync() to free up the dirty db2 pages. The only page that cannot be # freed is page1 of db2. Because there is an open transaction, the # btree layer holds a reference to page 1 in the db2 cache. execsql { BEGIN; UPDATE abc SET c = randstr(100,100) WHERE rowid = 1 OR rowid = (SELECT max(rowid) FROM abc); } db2 execsql { SELECT * FROM abc } db expr [nPage db] + [nPage db2]} {20}do_test malloc5-6.3.2 { # Try to release 7700 bytes. This should release all the # non-dirty pages held by db2. sqlite3_release_memory [expr 7*1100] list [nPage db] [nPage db2]} {10 3}do_test malloc5-6.3.3 { # Try to release another 1000 bytes. This should come fromt the db # cache, since all three pages held by db2 are either in-use or diry. sqlite3_release_memory 1000 list [nPage db] [nPage db2]} {9 3}do_test malloc5-6.3.4 { # Now release 9900 more (about 9 pages worth). This should expunge # the rest of the db cache. But the db2 cache remains intact, because # SQLite tries to avoid calling sync(). sqlite3_release_memory 9900 list [nPage db] [nPage db2]} {0 3}do_test malloc5-6.3.5 { # But if we are really insistent, SQLite will consent to call sync() # if there is no other option. UPDATE: As of 3.6.2, SQLite will not # call sync() in this scenario. So no further memory can be reclaimed. sqlite3_release_memory 1000 list [nPage db] [nPage db2]} {0 3}do_test malloc5-6.3.6 { # The referenced page (page 1 of the db2 cache) will not be freed no # matter how much memory we ask for: sqlite3_release_memory 31459 list [nPage db] [nPage db2]} {0 3}db2 closesqlite3_soft_heap_limit $::soft_limitfinish_testcatch {db close}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -