📄 mutex_unix.c
字号:
/*** 2007 August 28**** The author disclaims copyright to this source code. In place of** a legal notice, here is a blessing:**** May you do good and not evil.** May you find forgiveness for yourself and forgive others.** May you share freely, never taking more than you give.***************************************************************************** This file contains the C functions that implement mutexes for pthreads**** $Id: mutex_unix.c,v 1.13 2008/07/16 12:33:24 drh Exp $*/#include "sqliteInt.h"/*** The code in this file is only used if we are compiling threadsafe** under unix with pthreads.**** Note that this implementation requires a version of pthreads that** supports recursive mutexes.*/#ifdef SQLITE_MUTEX_PTHREADS#include <pthread.h>/*** Each recursive mutex is an instance of the following structure.*/struct sqlite3_mutex { pthread_mutex_t mutex; /* Mutex controlling the lock */ int id; /* Mutex type */ int nRef; /* Number of entrances */ pthread_t owner; /* Thread that is within this mutex */#ifdef SQLITE_DEBUG int trace; /* True to trace changes */#endif};#ifdef SQLITE_DEBUG#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0, 0 }#else#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0 }#endif/*** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are** intended for use only inside assert() statements. On some platforms,** there might be race conditions that can cause these routines to** deliver incorrect results. In particular, if pthread_equal() is** not an atomic operation, then these routines might delivery** incorrect results. On most platforms, pthread_equal() is a ** comparison of two integers and is therefore atomic. But we are** told that HPUX is not such a platform. If so, then these routines** will not always work correctly on HPUX.**** On those platforms where pthread_equal() is not atomic, SQLite** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to** make sure no assert() statements are evaluated and hence these** routines are never called.*/#ifndef NDEBUGstatic int pthreadMutexHeld(sqlite3_mutex *p){ return (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));}static int pthreadMutexNotheld(sqlite3_mutex *p){ return p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;}#endif/*** Initialize and deinitialize the mutex subsystem.*/static int pthreadMutexInit(void){ return SQLITE_OK; }static int pthreadMutexEnd(void){ return SQLITE_OK; }/*** The sqlite3_mutex_alloc() routine allocates a new** mutex and returns a pointer to it. If it returns NULL** that means that a mutex could not be allocated. SQLite** will unwind its stack and return an error. The argument** to sqlite3_mutex_alloc() is one of these integer constants:**** <ul>** <li> SQLITE_MUTEX_FAST** <li> SQLITE_MUTEX_RECURSIVE** <li> SQLITE_MUTEX_STATIC_MASTER** <li> SQLITE_MUTEX_STATIC_MEM** <li> SQLITE_MUTEX_STATIC_MEM2** <li> SQLITE_MUTEX_STATIC_PRNG** <li> SQLITE_MUTEX_STATIC_LRU** </ul>**** The first two constants cause sqlite3_mutex_alloc() to create** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE** is used but not necessarily so when SQLITE_MUTEX_FAST is used.** The mutex implementation does not need to make a distinction** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does** not want to. But SQLite will only request a recursive mutex in** cases where it really needs one. If a faster non-recursive mutex** implementation is available on the host platform, the mutex subsystem** might return such a mutex in response to SQLITE_MUTEX_FAST.**** The other allowed parameters to sqlite3_mutex_alloc() each return** a pointer to a static preexisting mutex. Three static mutexes are** used by the current version of SQLite. Future versions of SQLite** may add additional static mutexes. Static mutexes are for internal** use by SQLite only. Applications that use SQLite mutexes should** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or** SQLITE_MUTEX_RECURSIVE.**** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()** returns a different mutex on every call. But for the static ** mutex types, the same mutex is returned on every call that has** the same type number.*/static sqlite3_mutex *pthreadMutexAlloc(int iType){ static sqlite3_mutex staticMutexes[] = { SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER }; sqlite3_mutex *p; switch( iType ){ case SQLITE_MUTEX_RECURSIVE: { p = sqlite3MallocZero( sizeof(*p) ); if( p ){#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX /* If recursive mutexes are not available, we will have to ** build our own. See below. */ pthread_mutex_init(&p->mutex, 0);#else /* Use a recursive mutex if it is available */ pthread_mutexattr_t recursiveAttr; pthread_mutexattr_init(&recursiveAttr); pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE); pthread_mutex_init(&p->mutex, &recursiveAttr); pthread_mutexattr_destroy(&recursiveAttr);#endif p->id = iType; } break; } case SQLITE_MUTEX_FAST: { p = sqlite3MallocZero( sizeof(*p) ); if( p ){ p->id = iType; pthread_mutex_init(&p->mutex, 0); } break; } default: { assert( iType-2 >= 0 ); assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) ); p = &staticMutexes[iType-2]; p->id = iType; break; } } return p;}/*** This routine deallocates a previously** allocated mutex. SQLite is careful to deallocate every** mutex that it allocates.*/static void pthreadMutexFree(sqlite3_mutex *p){ assert( p->nRef==0 ); assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE ); pthread_mutex_destroy(&p->mutex); sqlite3_free(p);}/*** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt** to enter a mutex. If another thread is already within the mutex,** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can** be entered multiple times by the same thread. In such cases the,** mutex must be exited an equal number of times before another thread** can enter. If the same thread tries to enter any other kind of mutex** more than once, the behavior is undefined.*/static void pthreadMutexEnter(sqlite3_mutex *p){ assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX /* If recursive mutexes are not available, then we have to grow ** our own. This implementation assumes that pthread_equal() ** is atomic - that it cannot be deceived into thinking self ** and p->owner are equal if p->owner changes between two values ** that are not equal to self while the comparison is taking place. ** This implementation also assumes a coherent cache - that ** separate processes cannot read different values from the same ** address at the same time. If either of these two conditions ** are not met, then the mutexes will fail and problems will result. */ { pthread_t self = pthread_self(); if( p->nRef>0 && pthread_equal(p->owner, self) ){ p->nRef++; }else{ pthread_mutex_lock(&p->mutex); assert( p->nRef==0 ); p->owner = self; p->nRef = 1; } }#else /* Use the built-in recursive mutexes if they are available. */ pthread_mutex_lock(&p->mutex); p->owner = pthread_self(); p->nRef++;#endif#ifdef SQLITE_DEBUG if( p->trace ){ printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); }#endif}static int pthreadMutexTry(sqlite3_mutex *p){ int rc; assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX /* If recursive mutexes are not available, then we have to grow ** our own. This implementation assumes that pthread_equal() ** is atomic - that it cannot be deceived into thinking self ** and p->owner are equal if p->owner changes between two values ** that are not equal to self while the comparison is taking place. ** This implementation also assumes a coherent cache - that ** separate processes cannot read different values from the same ** address at the same time. If either of these two conditions ** are not met, then the mutexes will fail and problems will result. */ { pthread_t self = pthread_self(); if( p->nRef>0 && pthread_equal(p->owner, self) ){ p->nRef++; rc = SQLITE_OK; }else if( pthread_mutex_trylock(&p->mutex)==0 ){ assert( p->nRef==0 ); p->owner = self; p->nRef = 1; rc = SQLITE_OK; }else{ rc = SQLITE_BUSY; } }#else /* Use the built-in recursive mutexes if they are available. */ if( pthread_mutex_trylock(&p->mutex)==0 ){ p->owner = pthread_self(); p->nRef++; rc = SQLITE_OK; }else{ rc = SQLITE_BUSY; }#endif#ifdef SQLITE_DEBUG if( rc==SQLITE_OK && p->trace ){ printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); }#endif return rc;}/*** The sqlite3_mutex_leave() routine exits a mutex that was** previously entered by the same thread. The behavior** is undefined if the mutex is not currently entered or** is not currently allocated. SQLite will never do either.*/static void pthreadMutexLeave(sqlite3_mutex *p){ assert( pthreadMutexHeld(p) ); p->nRef--; assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX if( p->nRef==0 ){ pthread_mutex_unlock(&p->mutex); }#else pthread_mutex_unlock(&p->mutex);#endif#ifdef SQLITE_DEBUG if( p->trace ){ printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); }#endif}sqlite3_mutex_methods *sqlite3DefaultMutex(void){ static sqlite3_mutex_methods sMutex = { pthreadMutexInit, pthreadMutexEnd, pthreadMutexAlloc, pthreadMutexFree, pthreadMutexEnter, pthreadMutexTry, pthreadMutexLeave,#ifdef SQLITE_DEBUG pthreadMutexHeld, pthreadMutexNotheld#endif }; return &sMutex;}#endif /* SQLITE_MUTEX_PTHREAD */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -