⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 trainer.cpp

📁 Gaussian Mixture Algorithm
💻 CPP
字号:
/*************************************************************************** *   Copyright (C) 2008 by Yann LeCun and Pierre Sermanet  * *   yann@cs.nyu.edu, pierre.sermanet@gmail.com   * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: *     * Redistributions of source code must retain the above copyright *       notice, this list of conditions and the following disclaimer. *     * Redistributions in binary form must reproduce the above copyright *       notice, this list of conditions and the following disclaimer in the *       documentation and/or other materials provided with the distribution. *     * Redistribution under a license not approved by the Open Source *       Initiative (http://www.opensource.org) must display the *       following acknowledgement in all advertising material: *        This product includes software developed at the Courant *        Institute of Mathematical Sciences (http://cims.nyu.edu). *     * The names of the authors may not be used to endorse or promote products *       derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL ThE AUTHORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ***************************************************************************/#include "Trainer.h"#include "IdxIO.h"using namespace std;namespace ebl {eb_trainer::eb_trainer(idx3_supervised_module *m, parameter *p,		state_idx *e, state_idx *in) {  machine = m;  param = p;  age = 0;  energy_owned = false;  input_owned = false;  if (e != NULL)  	energy = e;  else {    // set energy slot to default idx0-ddstate    energy = new state_idx();    energy_owned = true;    energy->dx.set(1.0);    energy->ddx.set(0.0);  }  if (in != NULL)  	input = in;  else {  	input = new state_idx(1, 1, 1);  	input_owned = true;  }}eb_trainer::~eb_trainer() {	if (energy_owned) delete energy;	if (input_owned) delete input;}////////////////////////////////////////////////////////////////supervised::supervised(idx3_supervised_module *m, parameter *p,		state_idx *e, state_idx *in,		class_state *out, Idx<ubyte> *des): eb_trainer(m, p, e, in) {  output_owned = true;  desired_owned = true;  if (out != NULL)  	output = out;  else {    output = new class_state(2);    output_owned = true;  }  if (des != NULL)    desired = des;  else {    desired = new Idx<ubyte>();    desired_owned = true;  }}supervised::~supervised() {	if (output_owned) delete output;	if (desired_owned) delete desired;}////////////////////////////////////////////////////////////////supervised_gradient::supervised_gradient(idx3_supervised_module *m, parameter *p,		state_idx *e, state_idx *in,		class_state *out, Idx<ubyte> *des): supervised(m, p, e, in, out, des) {}supervised_gradient::~supervised_gradient() {}} // end namespace ebl

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -