⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 caleof.m

📁 主元分析法的相关算法
💻 M
字号:
% [EOFs,PC,EXPVAR] = CALEOF(M,N,METHOD) Compute EOF%% => Compute the Nth first EOFs of matrix M(TIME,MAP).% EOFs is a matrix of the form EOFs(N,MAP), PC is the principal% components matrix ie it has the form PC(N,TIME) and EXPVAR is% the fraction of total variance "explained" by each EOF ie it has% the form EXPVAR(N).% Differents method can be used:% 1 - The "classic" one, ie we compute eigenvectors of the %     temporal covariance matrix with the eig Matlab function.% 2 - A faster "classic" one, same as method 1 but we use the%     eigs Matlab function.% 3 - We compute eigenvectors by the singular value decomposition,%     by used of the svd Matlab function.% 4 - Same as method 3 but faster by used of the svds Matlab function%% See also EIG, EIGS, SVD, SVDS%% Ref: L. Hartmann: "Objective Analysis" 2002% Ref: H. Bjornson and S.A. Venegas: "A manual for EOF and SVD - %      Analyses of climatic Data" 1997%================================================================%  Guillaume MAZE - LPO/LMD - March 2004%  Revised July 2006%  gmaze@univ-brest.frfunction [e,pc,expvar,L] = caleof(M,N,method);% Get dimensions[n p]=size(M);% Temporal covariance is p*p matrix, that why max EOF computable is p, % so we perform a test on parameter N:if(N>p) disp('Warning: N is larger than possible so it''s modified to perform') disp('         EOFs computing...'); N = p; end% Eventualy time filtering of dataif 0==1   disp('====> Time filtering...')   Fc  = 1/20; Fc2 = 1/1;   Fc  = 1/7 ; Fc2 = 1/3;   SIGNAL = M(:,1);   nj = fix(length(SIGNAL)/10); % Nombre de points du filtre   for ipt = 1 : p       SIGNAL = M(:,ipt);       SIGNALF = lanczos(SIGNAL,Fc2,nj);       SIGNALF = SIGNALF - lanczos(SIGNALF,Fc,nj);       Y(:,ipt) = SIGNALF;   end   M = Y;enddisp('====> Let''go for EOFs and pc computing...')switch method    case 1 % CLASSIC METHOD%================================================================% Transform the data matrix in the correct form (map*time) for eigM = M';% Remove the time mean (ie the mean of each rows of M)% Rq: detrend remove the mean of columns ie we take M'.F = detrend(M','constant')';% Covariance Matrix (inner product over space = covariance in time)R = F * F';% Eigenanalysis of the covariance matrix R[E,L] = eig(R);% Get PC by projecting eigenvectors on original dataZ = E'*F;% Make them clear for outputfor iN=1:N    e(iN,:) = squeeze( E(:,p-(iN-1)) )';   pc(iN,:) = squeeze( Z(p-(iN-1),:) );end% Amount of explained variance (at 0.1%)dsum = diag(L)./trace(L);for iN=1:N   expvar(iN)=fix((dsum(p-(iN-1))*100/sum(dsum))*10)/10;end% Plots Original field and reconstructed oneif 0==1figure;subplot(1,2,1);imagesc(abs(M));title('ORIGINAL');cx=caxis;%subplot(1,2,2);imagesc((E*Z));title('RECONSTRUCTED')subplot(1,2,2);imagesc(abs(e'*pc));title('RECONSTRUCTED');caxis(cx);end    case 2 % RAPID CLASSIC METHOD %================================================================% Remove the time mean of each columnF = detrend(M,'constant');% Covariance Matrixif n >= p   R = F' * F;else    R = F * F';end% Eigen analysis of the square covariance matrix[E,L] = eigs(R,N);if n < p  E = F' * E;  sq = [sqrt(diag(L))+eps]';  sq = sq(ones(1,p),:);  E = E ./ sq;end% Get PC by projecting eigenvectors on original dataif n >= p   Z = (F*E)';else   Z =  E'*F';end% Make them clear for outputfor iN=1:N    e(iN,:) = squeeze( E(:,iN) )';   pc(iN,:) = squeeze( Z(iN,:) );end% Amount of variance explained a 0.1 pres et en %dsum=diag(L)./trace(L);for iN=1:N   expvar(iN)=fix((dsum(iN)*100/sum(dsum))*10)/10;end    case 3 % SVD METHOD%================================================================% Ref: H. Bjornson and S.A. Venegas: "A manual for EOF and SVD - % Analyses of climatic Data" 1997 => p18% Assume that M is (time*map) matrix[n p]=size(M);% Remove the mean of each column (ie the time mean in each station records)F=detrend(M,'constant');% Form the covariance matrix:R = F'*F;% Find eigenvectors and singular values[C,L,CC] = svd(R);% Eigenvectors are in CC and the squared diagonal values of L% are the eigenvalues of the temporal covariance matrix R=F'*F% find the PC corresponding to eigenvaluePC = F*CC;% Make them clear for outputfor iN=1:N    e(iN,:) = squeeze( CC(:,iN) )';   pc(iN,:) = squeeze( PC(:,iN) )';endif 0figure;subplot(1,2,1);imagesc(F);title('ORIGINAL');cx=caxis;subplot(1,2,2);imagesc(C*L*CC');title('RECONSTRUCTED');caxis(cx);end% Amount of variance explained at 0.1%dsum=diag(L)./trace(L);if length(dsum)<N % L was not squared  dsum = [dsum ;zeros(N-length(dsum),1)];endfor iN = 1 : N   expvar(iN)=fix( ( dsum(iN)*100/sum(dsum) )*10 ) /10;end    case 4 % FAST SVD METHOD%================================================================% Ref: H. Bjornson and S.A. Venegas: "A manual for EOF and SVD - % Analyses of climatic Data" 1997 => p18% Assume that M is (time*map) matrix[n p]=size(M);% Remove the mean of each column (ie the time mean in each station records)F=detrend(M,'constant');% Form the covariance matrix:R = F' * F;% Find eigenvectors and singular values[C,L,CC,flag] = svds(R,N);% Eigenvectors are in CC and the squared diagonal values of L% are the eigenvalues of the temporal covariance matrix R=F'*F% (Sometimes, CC stops for nul eigenvector, then we need to fill to reach N)if size(CC,2)<N  CC = [CC  zeros(size(CC,1),N-size(CC,2)+1)];end% find the PC corresponding to eigenvaluePC = F*CC;% Which is similar to: C*L% Make them clear for outputfor iN=1:N    e(iN,:) = squeeze( CC(:,iN) )';   pc(iN,:) = squeeze( PC(:,iN) )';end% Amount of variance explained a 0.1 pres et en %dsum=diag(L)./trace(L);if length(dsum)<N % L was not squared  dsum = [dsum ;zeros(N-length(dsum),1)];endfor iN=1:N   expvar(iN)=fix( ( dsum(iN)*100/sum(dsum) )*10 ) /10;end%figure;%subplot(1,2,1);imagesc(M);title('ORIGINAL');cx=caxis;%subplot(1,2,2);imagesc((e'*pc)');title('RECONSTRUCTED');caxis(cx);end % switch methoddisp('====> Finished !')

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -