📄 example_gpio.c
字号:
//###########################################################################
//
// FILE: Example_GPIO.c
//
// TITLE: Example_GPIO TEST
//
// ASSUMPTIONS:
//
// This program requires the DSP281x V1.00 header files.
// As supplied, this project is configured for "boot to H0" operation.
//
// Other then boot mode pin configuration, no other hardware configuration
// is required.
//
// Three different examples are included. Select the example
// (data, set/clear or toggle) to execute before compiling using
// the #define statements found at the top of the code.
//
// DESCRIPTION:
//
// Toggle all of the GPIO PORT pins
//
// The pins can be observed using Oscilloscope.
//
//
//###########################################################################
//
// Original by S.S.
//
// Ver | dd mmm yyyy | Who | Description of changes
// =====|=============|======|===============================================
// 1.00 | 11 Sep 2003 | L.H. | First Release
//###########################################################################
#include "DSP281x_Device.h" // DSP281x Headerfile Include File
#include "DSP281x_Examples.h" // DSP281x Examples Include File
// Select the example to compile in. Only one example should be set as 1
// the rest should be set as 0.
#define LED_TIME 10000
void Delay_loop();
void Gpio_select();
void Gpio_example1();
void Gpio_example2();
void Gpio_example3();
void LedRun();//led测试
Uchar EepromTest(Uchar data,Uint16 addr);
Uint16 Delay_count=100;
Uint16 GportVariable,Input[2],Output[2],HighSpeedIn,HighSpeedOut,DzValue[128];
Uchar i2c_value;
void main(void)
{
/*------------------------------------------------------------------
To use the F2812, F2811 or F2810 Flash API, the following steps
must be followed:
1. Modify Flash281x_API.config.h for your targets operating
conditions.
2. Include Flash281x_API_Library.h in the application.
3. Add the approparite Flash API library to the project.
The user's code is responsible for the following:
4. Initalize the PLL to the proper CPU operating frequency.
5. If required, copy the flash API functions into on-chip zero waitstate
RAM.
6. Initalize the Flash_CPUScaleFactor variable to SCALE_FACTOR
7. Optional: Run the Toggle test to confirm proper frequency configuration
of the API.
8. Optional: Unlock the CSM.
9. Call the API functions: Flash_Erase(), Flash_Program(), Flash_Verify()
The API functions will:
Disable the watchdog
Check the device revision (REVID). This API is for Revision C silicon
Perform the desired operation and return status
------------------------------------------------------------------*/
volatile Uint16 iVol;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP281x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP281x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
InitGpio(); // Skipped for this example
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP281x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP281x_DefaultIsr.c.
// This function is found in DSP281x_PieVect.c.
InitPieVectTable();
// Enable interrupts required for this example
XIntruptRegs.XINT1CR.bit.ENABLE=1; //enable xint1
XIntruptRegs.XINT1CR.bit.POLARITY=0;// on a falling edge
PieCtrlRegs.PIEIER1.bit.INTx4=1; // PIE Group 1, INT4
IER = 0x001; // Enable CPU INT1
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP281x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
// Step 5. User specific code:
EnableInterrupts();
Gpio_select();//GPIO选择
//Gpio_example1();//GPIO测试1
//Gpio_example2();//GPIO测试2
//Gpio_example3();//GPIO测试3
LedRun();//led测试
}
void Delay_loop()
{
Uint16 j,i,sum;
j=0;
sum=0;
for (i = 0; i < Delay_count; i++) {
for(j=0; j<1 ;j++)
sum=sum+1;
}
}
void Gpio_example1(void)
{
// Example 1:
// Toggle I/Os using DATA registers
// Note: When using the DATA reigsters, input values
// may be lost. If there are inputs on the port then
// use the CLEAR/SET/TOGGLE registers instead.
Uint16 i;
i=0;
while(1)
{
Input[0]=GpioDataRegs.GPADAT.all; // input status
Input[1]=GpioDataRegs.GPBDAT.all; // input status
if(Output[0]) //test output0
GpioDataRegs.GPFDAT.bit.GPIOF0=1;
else
GpioDataRegs.GPFDAT.bit.GPIOF0=0;
if(Output[1]) //test output1
GpioDataRegs.GPFDAT.bit.GPIOF1=1;
else
GpioDataRegs.GPFDAT.bit.GPIOF1=0;
HighSpeedIn=GpioDataRegs.GPFDAT.bit.GPIOF4; //test HighSpeedIn
if(HighSpeedOut) //test HighSpeedOut
GpioDataRegs.GPFDAT.bit.GPIOF5=1;
else
GpioDataRegs.GPFDAT.bit.GPIOF5=0;
GpioDataRegs.GPGDAT.all =GportVariable;
Delay_loop();
GpioDataRegs.GPGDAT.all =GportVariable & 0xFFDF; // GPGDAT.bit5
Delay_loop();
if (Delay_count==10000){
i++;
if (i==10){
i=0;
Delay_count=1000;
}
}
}
}
void Gpio_example2(void)
{
// Example 2:
// Toggle I/Os using SET/CLEAR registers
while(1)
{
GpioDataRegs.GPASET.all =0xAAAA;
GpioDataRegs.GPACLEAR.all =0x5555;
GpioDataRegs.GPBSET.all =0xAAAA;
GpioDataRegs.GPBCLEAR.all =0x5555;
GpioDataRegs.GPDSET.all =0x0022;
GpioDataRegs.GPDCLEAR.all =0x0041; // Four I/Os only
GpioDataRegs.GPESET.all =0x0002;
GpioDataRegs.GPECLEAR.all =0x0005; // ThreeI/Os only
GpioDataRegs.GPFSET.all =0xAAAA;
GpioDataRegs.GPFCLEAR.all =0x5555;
GpioDataRegs.GPGSET.all =0x0020;
GpioDataRegs.GPGCLEAR.all =0x0010; // Two I/Os only
Delay_loop();
GpioDataRegs.GPACLEAR.all =0xAAAA;
GpioDataRegs.GPASET.all =0x5555;
GpioDataRegs.GPBCLEAR.all =0xAAAA;
GpioDataRegs.GPBSET.all =0x5555;
GpioDataRegs.GPDCLEAR.all =0x0022;
GpioDataRegs.GPDSET.all =0x0041; // Four I/Os only
GpioDataRegs.GPECLEAR.all =0x0002;
GpioDataRegs.GPESET.all =0x0005; // ThreeI/Os only
GpioDataRegs.GPFCLEAR.all =0xAAAA;
GpioDataRegs.GPFSET.all =0x5555;
GpioDataRegs.GPGCLEAR.all =0x0020;
GpioDataRegs.GPGSET.all =0x0010; // Two I/Os only
Delay_loop();
}
}
void Gpio_example3(void)
{
// Example 2:
// Toggle I/Os using TOGGLE registers
// Set pins to a known state
GpioDataRegs.GPASET.all =0xAAAA;
GpioDataRegs.GPACLEAR.all =0x5555;
GpioDataRegs.GPBSET.all =0xAAAA;
GpioDataRegs.GPBCLEAR.all =0x5555;
GpioDataRegs.GPDSET.all =0x0022;
GpioDataRegs.GPDCLEAR.all =0x0041; // Four I/Os only
GpioDataRegs.GPESET.all =0x0002;
GpioDataRegs.GPECLEAR.all =0x0005; // ThreeI/Os only
GpioDataRegs.GPFSET.all =0xAAAA;
GpioDataRegs.GPFCLEAR.all =0x5555;
GpioDataRegs.GPGSET.all =0x0020;
GpioDataRegs.GPGCLEAR.all =0x0010; // Two I/Os only
// Use TOGGLE registers to flip the state of
// the pins.
// Any bit set to a 1 will flip state (toggle)
// Any bit set to a 0 will not toggle.
while(1)
{
GpioDataRegs.GPATOGGLE.all = 0xFFFF;
GpioDataRegs.GPBTOGGLE.all = 0xFFFF;
GpioDataRegs.GPDTOGGLE.all = 0xFFFF;
GpioDataRegs.GPETOGGLE.all = 0xFFFF;
GpioDataRegs.GPFTOGGLE.all = 0xFFFF;
GpioDataRegs.GPGTOGGLE.all = 0xFFFF;
Delay_loop();
}
}
void Gpio_select(void)
{
Uint16 var1;
Uint16 var2;
Uint16 var3;
var1= 0x0000; // sets GPIO Muxs as I/Os
var2= 0xFFFF; // sets GPIO DIR as outputs
var3= 0x0000; // sets the Input qualifier values
EALLOW;
GpioMuxRegs.GPAMUX.all=var1;
GpioMuxRegs.GPBMUX.all=var1;
GpioMuxRegs.GPDMUX.all=var1;
GpioMuxRegs.GPFMUX.all=var1;
GpioMuxRegs.GPEMUX.all=var1;
GpioMuxRegs.GPGMUX.all=var1;
GpioMuxRegs.GPADIR.all=var2; // GPIO PORTs as output
GpioMuxRegs.GPBDIR.all=var2; // GPIO DIR select GPIOs as output
GpioMuxRegs.GPDDIR.all=var2;
GpioMuxRegs.GPEDIR.all=var2;
GpioMuxRegs.GPFDIR.all=var2;
GpioMuxRegs.GPGDIR.all=var2;
GpioMuxRegs.GPAQUAL.all=var3; // Set GPIO input qualifier values
GpioMuxRegs.GPBQUAL.all=var3;
GpioMuxRegs.GPDQUAL.all=var3;
GpioMuxRegs.GPEQUAL.all=var3;
EDIS;
}
Uint32 LedOnTime,LedOffTime;
Uint16 LedFlag=0;
void LedRun(void)
{
for(;;)
{
if((LedOnTime>LED_TIME)){
LedOnTime=0;
LedFlag=0xff;
}
else if(LedFlag==0){
LedOnTime++;
LedOffTime=0;
}
if(LedOffTime>LED_TIME){
LedOffTime=0;
LedFlag=0;
}
else if(LedFlag==0xff){
LedOffTime++;
LedOnTime=0;
}
Delay_loop();
if(LedFlag==0)
GpioDataRegs.GPFDAT.bit.GPIOF3=0; // Select GPIOF12 Output for test
else if(LedFlag==0xff)
GpioDataRegs.GPFDAT.bit.GPIOF3=1; // Select GPIOF12 Output for test
}
}
//===========================================================================
// No more.
//===========================================================================
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -