📄 quant.c
字号:
/*****************************************************************************
* quant.c: h264 encoder library
*****************************************************************************
* Copyright (C) 2005 x264 project
*
* Authors: Christian Heine <sennindemokrit@gmx.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111, USA.
*****************************************************************************/
#include "common.h"
#ifdef HAVE_MMXEXT
#include "i386/quant.h"
#endif
#define QUANT_ONE( coef, mf ) \
{ \
if( (coef) > 0 ) \
(coef) = ( f + (coef) * (mf) ) >> i_qbits; \
else \
(coef) = - ( ( f - (coef) * (mf) ) >> i_qbits ); \
}
static void quant_8x8_core( int16_t dct[8][8], int quant_mf[8][8], int i_qbits, int f )
{
int i;
for( i = 0; i < 64; i++ )
QUANT_ONE( dct[0][i], quant_mf[0][i] );
}
static void quant_4x4_core( int16_t dct[4][4], int quant_mf[4][4], int i_qbits, int f )
{
int i;
for( i = 0; i < 16; i++ )
QUANT_ONE( dct[0][i], quant_mf[0][i] );
}
static void quant_4x4_dc_core( int16_t dct[4][4], int i_quant_mf, int i_qbits, int f )
{
int i;
for( i = 0; i < 16; i++ )
QUANT_ONE( dct[0][i], i_quant_mf );
}
static void quant_2x2_dc_core( int16_t dct[2][2], int i_quant_mf, int i_qbits, int f )
{
QUANT_ONE( dct[0][0], i_quant_mf );
QUANT_ONE( dct[0][1], i_quant_mf );
QUANT_ONE( dct[0][2], i_quant_mf );
QUANT_ONE( dct[0][3], i_quant_mf );
}
#define DEQUANT_SHL( x ) \
dct[y][x] = ( dct[y][x] * dequant_mf[i_mf][y][x] ) << i_qbits
#define DEQUANT_SHR( x ) \
dct[y][x] = ( dct[y][x] * dequant_mf[i_mf][y][x] + f ) >> (-i_qbits)
static void dequant_4x4( int16_t dct[4][4], int dequant_mf[6][4][4], int i_qp )
{
const int i_mf = i_qp%6;
const int i_qbits = i_qp/6 - 4;
int y;
if( i_qbits >= 0 )
{
for( y = 0; y < 4; y++ )
{
DEQUANT_SHL( 0 );
DEQUANT_SHL( 1 );
DEQUANT_SHL( 2 );
DEQUANT_SHL( 3 );
}
}
else
{
const int f = 1 << (-i_qbits-1);
for( y = 0; y < 4; y++ )
{
DEQUANT_SHR( 0 );
DEQUANT_SHR( 1 );
DEQUANT_SHR( 2 );
DEQUANT_SHR( 3 );
}
}
}
static void dequant_8x8( int16_t dct[8][8], int dequant_mf[6][8][8], int i_qp )
{
const int i_mf = i_qp%6;
const int i_qbits = i_qp/6 - 6;
int y;
if( i_qbits >= 0 )
{
for( y = 0; y < 8; y++ )
{
DEQUANT_SHL( 0 );
DEQUANT_SHL( 1 );
DEQUANT_SHL( 2 );
DEQUANT_SHL( 3 );
DEQUANT_SHL( 4 );
DEQUANT_SHL( 5 );
DEQUANT_SHL( 6 );
DEQUANT_SHL( 7 );
}
}
else
{
const int f = 1 << (-i_qbits-1);
for( y = 0; y < 8; y++ )
{
DEQUANT_SHR( 0 );
DEQUANT_SHR( 1 );
DEQUANT_SHR( 2 );
DEQUANT_SHR( 3 );
DEQUANT_SHR( 4 );
DEQUANT_SHR( 5 );
DEQUANT_SHR( 6 );
DEQUANT_SHR( 7 );
}
}
}
void x264_mb_dequant_2x2_dc( int16_t dct[2][2], int dequant_mf[6][4][4], int i_qp )
{
const int i_qbits = i_qp/6 - 5;
if( i_qbits >= 0 )
{
const int i_dmf = dequant_mf[i_qp%6][0][0] << i_qbits;
dct[0][0] *= i_dmf;
dct[0][1] *= i_dmf;
dct[1][0] *= i_dmf;
dct[1][1] *= i_dmf;
}
else
{
const int i_dmf = dequant_mf[i_qp%6][0][0];
// chroma DC is truncated, not rounded
dct[0][0] = ( dct[0][0] * i_dmf ) >> (-i_qbits);
dct[0][1] = ( dct[0][1] * i_dmf ) >> (-i_qbits);
dct[1][0] = ( dct[1][0] * i_dmf ) >> (-i_qbits);
dct[1][1] = ( dct[1][1] * i_dmf ) >> (-i_qbits);
}
}
void x264_mb_dequant_4x4_dc( int16_t dct[4][4], int dequant_mf[6][4][4], int i_qp )
{
const int i_qbits = i_qp/6 - 6;
int y;
if( i_qbits >= 0 )
{
const int i_dmf = dequant_mf[i_qp%6][0][0] << i_qbits;
for( y = 0; y < 4; y++ )
{
dct[y][0] *= i_dmf;
dct[y][1] *= i_dmf;
dct[y][2] *= i_dmf;
dct[y][3] *= i_dmf;
}
}
else
{
const int i_dmf = dequant_mf[i_qp%6][0][0];
const int f = 1 << (-i_qbits-1);
for( y = 0; y < 4; y++ )
{
dct[y][0] = ( dct[y][0] * i_dmf + f ) >> (-i_qbits);
dct[y][1] = ( dct[y][1] * i_dmf + f ) >> (-i_qbits);
dct[y][2] = ( dct[y][2] * i_dmf + f ) >> (-i_qbits);
dct[y][3] = ( dct[y][3] * i_dmf + f ) >> (-i_qbits);
}
}
}
void x264_quant_init( x264_t *h, int cpu, x264_quant_function_t *pf )
{
int i, maxQ8=0, maxQ4=0, maxQdc=0;
pf->quant_8x8_core = quant_8x8_core;
pf->quant_4x4_core = quant_4x4_core;
pf->quant_4x4_dc_core = quant_4x4_dc_core;
pf->quant_2x2_dc_core = quant_2x2_dc_core;
pf->dequant_4x4 = dequant_4x4;
pf->dequant_8x8 = dequant_8x8;
#ifdef HAVE_MMXEXT
/* determine the biggest coeffient in all quant8_mf tables */
for( i = 0; i < 2*6*8*8; i++ )
{
int q = h->quant8_mf[0][0][0][i];
if( maxQ8 < q )
maxQ8 = q;
}
/* determine the biggest coeffient in all quant4_mf tables ( maxQ4 )
and the biggest DC coefficient if all quant4_mf tables ( maxQdc ) */
for( i = 0; i < 4*6*4*4; i++ )
{
int q = h->quant4_mf[0][0][0][i];
if( maxQ4 < q )
maxQ4 = q;
if( maxQdc < q && i%16 == 0 )
maxQdc = q;
}
/* select quant_8x8 based on CPU and maxQ8 */
if( maxQ8 < (1<<15) && cpu&X264_CPU_MMX )
pf->quant_8x8_core = x264_quant_8x8_core15_mmx;
else
if( maxQ8 < (1<<16) && cpu&X264_CPU_MMXEXT )
pf->quant_8x8_core = x264_quant_8x8_core16_mmxext;
else
if( cpu&X264_CPU_MMXEXT )
pf->quant_8x8_core = x264_quant_8x8_core32_mmxext;
/* select quant_4x4 based on CPU and maxQ4 */
if( maxQ4 < (1<<15) && cpu&X264_CPU_MMX )
pf->quant_4x4_core = x264_quant_4x4_core15_mmx;
else
if( maxQ4 < (1<<16) && cpu&X264_CPU_MMXEXT )
pf->quant_4x4_core = x264_quant_4x4_core16_mmxext;
else
if( cpu&X264_CPU_MMXEXT )
pf->quant_4x4_core = x264_quant_4x4_core32_mmxext;
/* select quant_XxX_dc based on CPU and maxQdc */
if( maxQdc < (1<<16) && cpu&X264_CPU_MMXEXT )
{
pf->quant_4x4_dc_core = x264_quant_4x4_dc_core16_mmxext;
pf->quant_2x2_dc_core = x264_quant_2x2_dc_core16_mmxext;
}
else
if( maxQdc < (1<<15) && cpu&X264_CPU_MMX )
{
pf->quant_4x4_dc_core = x264_quant_4x4_dc_core15_mmx;
pf->quant_2x2_dc_core = x264_quant_2x2_dc_core15_mmx;
}
else
if( cpu&X264_CPU_MMXEXT )
{
pf->quant_4x4_dc_core = x264_quant_4x4_dc_core32_mmxext;
pf->quant_2x2_dc_core = x264_quant_2x2_dc_core32_mmxext;
}
if( cpu&X264_CPU_MMX )
{
/* dequant is not subject to the above CQM-dependent overflow issues,
* as long as the inputs are in the range generable by dct+quant.
* that is not guaranteed by the standard, but is true within x264 */
pf->dequant_4x4 = x264_dequant_4x4_mmx;
pf->dequant_8x8 = x264_dequant_8x8_mmx;
}
#endif /* HAVE_MMXEXT */
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -