⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 classtree.c

📁 是基于linux系统的C++程序
💻 C
📖 第 1 页 / 共 2 页
字号:
/*******************************************************************   Copyright (C) 2001-7 Leo Breiman, Adele Cutler and Merck & Co., Inc.     This program is free software; you can redistribute it and/or   modify it under the terms of the GNU General Public License   as published by the Free Software Foundation; either version 2   of the License, or (at your option) any later version.    This program is distributed in the hope that it will be useful,   but WITHOUT ANY WARRANTY; without even the implied warranty of   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the   GNU General Public License for more details.                            *******************************************************************/#include <R.h>#include <Rmath.h>#include "rf.h"#ifdef C_CLASSTREEvoid classTree(int *a, int *b, int *class, int *cat, int mdim, int nsample,                int nclass, int *treemap, int *bestvar, double *bestsplit,               double *bestsplitnext, double *tgini, int *nodeStatus,               int *nodePop, int *nodeStart, double *tclassPop, int maxNodes,               int nodeSize, int *ncase, int *inBag, int mTry, int *varUsed,               int *nodeClass, int *treeSize, double *win) {/* Buildtree consists of repeated calls to two subroutines, Findbestsplit   and Movedata.  Findbestsplit does just that--it finds the best split of   the current node.  Movedata moves the data in the split node right and   left so that the data corresponding to each child node is contiguous.   The buildtree bookkeeping is different from that in Friedman's original   CART program.  ncur is the total number of nodes to date.   nodeStatus(k)=1 if the kth node has been split.  nodeStatus(k)=2 if the   node exists but has not yet been split, and =-1 of the node is terminal.   A node is terminal if its size is below a threshold value, or if it is   all one class, or if all the x-values are equal.  If the current node k   is split, then its children are numbered ncur+1 (left), and   ncur+2(right), ncur increases to ncur+2 and the next node to be split is   numbered k+1.  When no more nodes can be split, buildtree returns to the   main program.*//*  integer a(mdim,nsample),cl(nsample),cat(mdim),  treemap(2,numNodes),bestvar(numNodes),          bestsplit(numNodes), nodeStatus(numNodes),ta(nsample),          nodePop(numNodes),nodeStart(numNodes),          bestsplitnext(numNodes),idmove(nsample),          ncase(nsample),parent(numNodes),b(mdim,nsample),          jin(nsample),iv(mred),nodeclass(numNodes),mind(mred)                  double precision tclasspop(nclass),classpop(nclass,numNodes),     1     tclasscat(nclass,32),win(nsample),wr(nclass),wc(nclass),     1     wl(nclass),tgini(mdim), xrand */              int msplit = 0, i, j;          zeroInt(nodeStatus, maxNodes);    zeroInt(nodeStart, maxNodes);    zeroInt(nodePop, maxNodes);    zeroDouble(classPop, nclass * maxNodes);          for (i = 0; i < nclass; ++i) classPop[i] = tclassPop[i];    ncur = 1;    nodeStart[0] = 1;    nodePop[0] = *nuse;    nodeStatus[0] = NODE_TOSPLIT;    /* 2: not split yet, 1: split, -1: terminal */          /* start main loop */    for (i = 0; i < numNodes; ++i) {        if (i > ncur - 1) break;        if (nodeStatus[i] != NODE_TOSPLIT) continue;         /* initialize for next call to findbestsplit */        ndstart = nodeStart[i];        ndend = ndstart + nodePop[i] - 1;        for (j = 0; j < nclass; ++j) {            tclassPop[j] = classPop[j + i * nclass];        }        jstat = 0;        F77_CALL(findbestsplit)(a, b, cl, mdim, nsample, nclass, cat,                                ndstart, ndend, tclassPop, tclasscat,                                &msplit, &decsplit, &nbest, ncase, &jstat,                                inBag, mTry, win, wr, wc, wl, mred, i, mind);        if (jstat == 1) {             nodeStatus[i] = NODE_TERMINAL;            continue;        } else {             bestvar[i] = msplit;            varUsed[msplit - 1] = 1;            tgini[msplit - 1] += decsplit;            if (cat[msplit-1] == 1) {                bestsplit[i] = a[msplit - 1  + nbest * mdim];                bestsplitnext[i] = a[msplit - 1 + (nbest + 1) * mdim];            } else {                  bestsplit[i] = nbest;                  bestsplitnext[i] = 0;            }        }                  F77_CALL(movedata)(a, ta, mdim, nsample, ndstart, ndend, idmove,                           ncase, msplit, cat, nbest, ndendl);        /* leftnode no.= ncur+1, rightnode no. = ncur+2. */        nodePop[ncur+1] = ndendl - ndstart + 1;        nodePop[ncur+2] = ndend - ndendl;        nodeStart[ncur+1] = ndstart;        nodeStart[ncur+2] = ndendl + 1;        /* find class populations in both nodes */        for (n = ndstart; n <= ndendl; ++n) {            nc = ncase[n];            j = class[nc-1];            classPop[j - 1 + (ncur+1)*mdim] += win[nc - 1];        }        for (n = ndendl + 1; n <= ndend; ++n) {            nc = ncase[n];            j = cl[nc - 1];            classPop[j - 1 + (ncur+2) * mdim] += win[nc - 1];        }        /* check on nodeStatus */        nodeStatus[ncur + 1] = NODE_TOSPLIT;        nodeStatus[ncur + 2] = NODE_TOSPLIT;        if (nodePop[ncur + 1] <= ndsize) nodeStatus[ncur+1] = NODE_TERMINAL;        if (nodePop[ncur + 2] <= ndsize) nodeStatus[ncur+2] = NODE_TERMINAL;        popt1 = 0;        popt2 = 0;        for (j = 0; j < nclass; ++j) {            popt1 += classPop[j + (ncur+1) * mdim];            popt2 += classPop[j + (ncur+2) * mdim];        }        for (j = 0; j < nclass; ++j) {            if (classPop[j + (ncur+1) * mdim] == popt1)                 nodeStatus[ncur+1] = NODE_TERMINAL;            if (classPop[j + (ncur+2) * mdim] == popt2)                 nodeStatus[ncur+2] = NODE_TERMINAL;        }                treemap[i * 2] = ncur + 1;        treemap[1 + i * 2] = ncur + 2;        nodeStatus[i] = NODE_INTERIOR;        ncur += 2;        if (ncur >= numNodes) break;    }    ndbigtree = numNodes;    for (k = numNodes-1; k >= 0; --k) {        if (nodeStatus[k] == 0) ndbigtree--;        if (nodeStatus[k] == NODE_TOSPLIT) nodeStatus[k] = NODE_TERMINAL;    }    for (k = 0; k < ndbigtree; ++k) {        if (nodeStatus[k] == NODE_TERMINAL) {            pp = 0;            for (j = 0; j < nclass; ++j) {                if (classPop[j + k * nclass] > pp) {                    nodeClass[k] = j;                    pp = classPop[j + k * nclass];                }                /* Break ties at random: */                if (classPop[j + k * nclass] == pp && unif_rand() > 0.5) {                    nodeClass[k] = j;                    pp = classPop[j + k * nclass];                }            }        }    }}void findBestSplit(int *a, double *b, int *class, int mDim, int nSample,                    int nClass, int *nCat, int maxCat, int ndStart, int ndEnd,                    double *classCount, double *classCatTable,                    int *splitVar, double *decGini, int *bestSplit,                   int *ncase, int *splitStatus, int *inBag, int mtry,                   double *weight, double *wr, double *wc, double *wl,                   int *currentNode, int *mind) {/*      subroutine findbestsplit(a, b, cl, mdim, nsample, nclass, cat,     1     maxcat, ndstart, ndend, tclasspop, tclasscat, msplit,      2     decsplit, nbest, ncase, jstat, jin, mtry, win, wr, wc, wl,     3     mred, kbuild, mind) *//*     For the best split, msplit is the variable split on. decsplit is the     dec. in impurity.  If msplit is numerical, nsplit is the case number     of value of msplit split on, and nsplitnext is the case number of the     next larger value of msplit.  If msplit is categorical, then nsplit is     the coding into an integer of the categories going left.*/    integer a(mdim,nsample), cl(nsample), cat(mdim),     1     ncase(nsample), b(mdim,nsample), jin(nsample), nn, j                double precision tclasspop(nclass), tclasscat(nclass,32), dn(32),     1     win(nsample), wr(nclass), wc(nclass), wl(nclass), xrand      integer mind(mred), ncmax, ncsplit,nhit        ncmax = 10;    ncsplit = 512;    /* compute initial values of numerator and denominator of Gini */    parentNum = 0.0;    parentDen = 0.0;    for (i = 0; i < nClass; ++i) {        parentNum += classCount[i] * classCount[i];        parentDen += classCount[i];    }    crit0 = pno / pdo;    *splitStatus = 0;    critmax = -1.0e25;    for (i = 0; i < mDim; ++i) mind[i] = i;    /* start main loop through variables to find best split. */    last = mDim - 1;    for (i = 0, i < mtry; ++i) {        /* sample mtry variables w/o replacement. */        j = (int) (unif_rand() * (last + 1));        mvar = mIndex[j];        swapInt(mIndex[j], mIndex[last]);        last--;        lcat = nCat[mvar];        if (lcat == 1) {            /* Split on a numerical predictor. */            rightNum = parentNum;            rightDen = parentDen;            leftNum = 0.0;            leftDen = 0.0;            zeroDouble(wl, nClass);            for (j = 0; j < nClass; ++j) wr[j] = classCount[j];	    ntie = 1;            for (j = ndstart; j <= ndend - 1; ++j) {                nc = a[mvar, j-1];                u = weight[nc];                k = class[nc];

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -