📄 gettree.rd
字号:
\name{getTree}\alias{getTree}\title{Extract a single tree from a forest.}\description{ This function extract the structure of a tree from a \code{randomForest} object. }\usage{getTree(rfobj, k=1, labelVar=FALSE)}\arguments{ \item{rfobj}{a \code{\link{randomForest}} object.} \item{k}{which tree to extract?} \item{labelVar}{Should better labels be used for splitting variables and predicted class?}}\value{ A matrix (or data frame, if \code{labelVar=TRUE}) with six columns and number of rows equal to total number of nodes in the tree. The six columns are: \item{left daughter}{the row where the left daughter node is; 0 if the node is terminal} \item{right daughter}{the row where the right daughter node is; 0 if the node is terminal} \item{split var}{which variable was used to split the node; 0 if the node is terminal} \item{split point}{where the best split is; see Details for categorical predictor} \item{status}{is the node terminal (-1) or not (1)} \item{prediction}{the prediction for the node; 0 if the node is not terminal}}\details{ For numerical predictors, data with values of the variable less than the splitting point go to the left daughter node. For categorical predictors, the splitting point is represented by an integer, whose binary expansion gives the identities of the categories that goes to left or right. For example, if a predictor has three categories, and the split point is 5. The binary expansion of 5 is (1, 0, 1) (because \eqn{5 = 1*2^0 + 0*2^1 + 1*2^2}), so cases with categories 1 or 3 in this predictor get sent to the left, and the rest to the right.}%\references{%}\seealso{ \code{\link{randomForest}}}\examples{data(iris)## Look at the third trees in the forest.getTree(randomForest(iris[,-5], iris[,5], ntree=10), 3, labelVar=TRUE)}\author{Andy Liaw \email{andy\_liaw@merck.com}}\keyword{tree}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -