📄 outlier.rd
字号:
\name{outlier}\alias{outlier}\alias{outlier.randomForest}\alias{outlier.default}\title{Compute outlying measures}\description{Compute outlying measures based on a proximity matrix.}\usage{\method{outlier}{default}(x, cls=NULL, ...)\method{outlier}{randomForest}(x, ...)}\arguments{ \item{x}{a proximity matrix (a square matrix with 1 on the diagonal and values between 0 and 1 in the off-diagonal positions); or an object of class \code{\link{randomForest}}, whose \code{type} is not \code{regression}.} \item{cls}{the classes the rows in the proximity matrix belong to. If not given, all data are assumed to come from the same class.} \item{...}{arguments for other methods.}}\value{ A numeric vector containing the outlying measures. The outlying measure of a case is computed as n / sum(squared proximity), normalized by subtracting the median and divided by the MAD, within each class.}\seealso{ \code{\link{randomForest}}}\examples{set.seed(1)iris.rf <- randomForest(iris[,-5], iris[,5], proximity=TRUE)plot(outlier(iris.rf), type="h", col=c("red", "green", "blue")[as.numeric(iris$Species)])}\keyword{classif}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -