⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 outlier.rd

📁 是基于linux系统的C++程序
💻 RD
字号:
\name{outlier}\alias{outlier}\alias{outlier.randomForest}\alias{outlier.default}\title{Compute outlying measures}\description{Compute outlying measures based on a proximity matrix.}\usage{\method{outlier}{default}(x, cls=NULL, ...)\method{outlier}{randomForest}(x, ...)}\arguments{  \item{x}{a proximity matrix (a square matrix with 1 on the diagonal    and values between 0 and 1 in the off-diagonal positions); or an object of    class \code{\link{randomForest}}, whose \code{type} is not    \code{regression}.}  \item{cls}{the classes the rows in the proximity matrix belong to.  If    not given, all data are assumed to come from the same class.}  \item{...}{arguments for other methods.}}\value{  A numeric vector containing the outlying measures.  The outlying  measure of a case is computed as n / sum(squared proximity), normalized by  subtracting the median and divided by the MAD, within each class.}\seealso{  \code{\link{randomForest}}}\examples{set.seed(1)iris.rf <- randomForest(iris[,-5], iris[,5], proximity=TRUE)plot(outlier(iris.rf), type="h",     col=c("red", "green", "blue")[as.numeric(iris$Species)])}\keyword{classif}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -