⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 predict.randomforest.rd

📁 是基于linux系统的C++程序
💻 RD
字号:
\name{predict.randomForest}\alias{predict.randomForest}\title{predict method for random forest objects}\description{  Prediction of test data using random forest.}\usage{\method{predict}{randomForest}(object, newdata, type="response",  norm.votes=TRUE, predict.all=FALSE, proximity=FALSE, nodes=FALSE,  cutoff, ...)}\arguments{  \item{object}{an object of class \code{randomForest}, as that    created by the function \code{randomForest}.}  \item{newdata}{a data frame or matrix containing new data.  (Note: If    not given, the out-of-bag prediction in \code{object} is returned.}  \item{type}{one of \code{response}, \code{prob}. or \code{votes},  indicating the type of output: predicted values, matrix of class  probabilities, or matrix of vote counts.  \code{class} is allowed, but  automatically converted to "response", for backward compatibility.}  \item{norm.votes}{Should the vote counts be normalized (i.e.,    expressed as fractions)?  Ignored if \code{object$type} is    \code{regression}.}  \item{predict.all}{Should the predictions of all trees be kept?}  \item{proximity}{Should proximity measures be computed?  An error is    issued if \code{object$type} is \code{regression}.}  \item{nodes}{Should the terminal node indicators (an n by ntree    matrix) be return?  If so, it is in the ``nodes'' attribute of the    returned object.}  \item{cutoff}{(Classification only)  A vector of length equal to    number of classes.  The `winning' class for an observation is the    one with the maximum ratio of proportion of votes to cutoff.    Default is taken from the \code{forest$cutoff} component of    \code{object} (i.e., the setting used when running    \code{\link{randomForest}}).}   \item{...}{not used currently.}}\value{  If \code{object$type} is \code{regression}, a vector of predicted  values is returned.  If \code{predict.all=TRUE}, then the returned  object is a list of two components: \code{aggregate}, which is the  vector of predicted values by the forest, and \code{individual}, which  is a matrix where each column contains prediction by a tree in the  forest.   If \code{object$type} is \code{classification}, the object returned  depends on the argument \code{type}:  \item{response}{predicted classes (the classes with majority vote).}  \item{prob}{matrix of class probabilities (one column for each class  and one row for each input).}  \item{vote}{matrix of vote counts (one column for each class  and one row for each new input); either in raw counts or in fractions  (if \code{norm.votes=TRUE}).}If \code{predict.all=TRUE}, then the \code{individual} component of thereturned object is a character matrix where each column contains thepredicted class by a tree in the forest.If \code{proximity=TRUE}, the returned object is a list with twocomponents: \code{pred} is the prediction (as described above) and\code{proximity} is the proximitry matrix.  An error is issued if\code{object$type} is \code{regression}.If \code{nodes=TRUE}, the returned object has a ``nodes'' attribute,which is an n by ntree matrix, each column containing the node numberthat the cases fall in for that tree.}\references{  Breiman, L. (2001), \emph{Random Forests}, Machine Learning 45(1),  5-32.}\author{ Andy Liaw \email{andy\_liaw@merck.com} and Matthew Wiener  \email{matthew\_wiener@merck.com}, based on original Fortran code by  Leo Breiman and Adele Cutler.}\seealso{\code{\link{randomForest}}}\examples{data(iris)set.seed(111)ind <- sample(2, nrow(iris), replace = TRUE, prob=c(0.8, 0.2))iris.rf <- randomForest(Species ~ ., data=iris[ind == 1,])iris.pred <- predict(iris.rf, iris[ind == 2,])table(observed = iris[ind==2, "Species"], predicted = iris.pred)}\keyword{classif}% at least one, from doc/KEYWORDS\keyword{regression}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -