📄 rfimpute.rd
字号:
\name{rfImpute}\alias{rfImpute}\alias{rfImpute.formula}\alias{rfImpute.default}\title{Missing Value Imputations by randomForest}\description{ Impute missing values in predictor data using proximity from randomForest.}\usage{\method{rfImpute}{default}(x, y, iter=5, ntree=300, ...)\method{rfImpute}{formula}(x, data, ..., subset)}\arguments{ \item{x}{A data frame or matrix of predictors, some containing \code{NA}s, or a formula.} \item{y}{Response vector (\code{NA}'s not allowed).} \item{data}{A data frame containing the predictors and response.} \item{iter}{Number of iterations to run the imputation.} \item{ntree}{Number of trees to grow in each iteration of randomForest.} \item{...}{Other arguments to be passed to \code{\link{randomForest}}.} \item{subset}{A logical vector indicating which observations to use.}}\value{ A data frame or matrix containing the completed data matrix, where \code{NA}s are imputed using proximity from randomForest. The first column contains the response.}\details{ The algorithm starts by imputing \code{NA}s using \code{\link{na.roughfix}}. Then \code{\link{randomForest}} is called with the completed data. The proximity matrix from the randomForest is used to update the imputation of the \code{NA}s. For continuous predictors, the imputed value is the weighted average of the non-missing obervations, where the weights are the proximities. For categorical predictors, the imputed value is the category with the largest average proximity. This process is iterated \code{iter} times. Note: Imputation has not (yet) been implemented for the unsupervised case. Also, Breiman (2003) notes that the OOB estimate of error from randomForest tend to be optimistic when run on the data matrix with imputed values.}\references{ Leo Breiman (2003). Manual for Setting Up, Using, and Understanding Random Forest V4.0. \url{http://oz.berkeley.edu/users/breiman/Using_random_forests_v4.0.pdf}}\seealso{ \code{\link{na.roughfix}}.}\examples{data(iris)iris.na <- irisset.seed(111)## artificially drop some data values.for (i in 1:4) iris.na[sample(150, sample(20)), i] <- NAset.seed(222)iris.imputed <- rfImpute(Species ~ ., iris.na)set.seed(333)iris.rf <- randomForest(Species ~ ., iris.imputed)print(iris.rf)}\author{Andy Liaw}\keyword{regression}\keyword{classif}\keyword{tree}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -