⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rfimpute.rd

📁 是基于linux系统的C++程序
💻 RD
字号:
\name{rfImpute}\alias{rfImpute}\alias{rfImpute.formula}\alias{rfImpute.default}\title{Missing Value Imputations by randomForest}\description{  Impute missing values in predictor data using proximity from randomForest.}\usage{\method{rfImpute}{default}(x, y, iter=5, ntree=300, ...)\method{rfImpute}{formula}(x, data, ..., subset)}\arguments{  \item{x}{A data frame or matrix of predictors, some containing    \code{NA}s, or a formula.}  \item{y}{Response vector (\code{NA}'s not allowed).}  \item{data}{A data frame containing the predictors and response.}  \item{iter}{Number of iterations to run the imputation.}  \item{ntree}{Number of trees to grow in each iteration of    randomForest.}  \item{...}{Other arguments to be passed to    \code{\link{randomForest}}.}  \item{subset}{A logical vector indicating which observations to use.}}\value{  A data frame or matrix containing the completed data matrix, where  \code{NA}s are imputed using proximity from randomForest.  The first  column contains the response.}\details{  The algorithm starts by imputing \code{NA}s using  \code{\link{na.roughfix}}.  Then \code{\link{randomForest}} is called  with the completed data.  The proximity matrix from the randomForest  is used to update the imputation of the \code{NA}s.  For continuous  predictors, the imputed value is the weighted average of the  non-missing obervations, where the weights are the proximities.  For  categorical predictors, the imputed value is the category with the  largest average proximity.  This process is iterated \code{iter}  times.  Note: Imputation has not (yet) been implemented for the unsupervised  case.  Also, Breiman (2003) notes that the OOB estimate of error from  randomForest tend to be optimistic when run on the data matrix with  imputed values.}\references{  Leo Breiman (2003).  Manual for Setting Up, Using, and Understanding  Random Forest V4.0.  \url{http://oz.berkeley.edu/users/breiman/Using_random_forests_v4.0.pdf}}\seealso{  \code{\link{na.roughfix}}.}\examples{data(iris)iris.na <- irisset.seed(111)## artificially drop some data values.for (i in 1:4) iris.na[sample(150, sample(20)), i] <- NAset.seed(222)iris.imputed <- rfImpute(Species ~ ., iris.na)set.seed(333)iris.rf <- randomForest(Species ~ ., iris.imputed)print(iris.rf)}\author{Andy Liaw}\keyword{regression}\keyword{classif}\keyword{tree}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -