⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gettree.r

📁 是基于linux系统的C++程序
💻 R
字号:
getTree <- function(rfobj, k=1, labelVar=FALSE) {  if (is.null(rfobj$forest)) {    stop("No forest component in ", deparse(substitute(rfobj)))  }  if (k > rfobj$ntree) {    stop("There are fewer than ", k, "trees in the forest")  }  if (rfobj$type == "regression") {      tree <- cbind(rfobj$forest$leftDaughter[,k],                    rfobj$forest$rightDaughter[,k],                    rfobj$forest$bestvar[,k],                    rfobj$forest$xbestsplit[,k],                    rfobj$forest$nodestatus[,k],                    rfobj$forest$nodepred[,k])[1:rfobj$forest$ndbigtree[k],]  } else {      tree <- cbind(rfobj$forest$treemap[,,k],                    rfobj$forest$rightDaughter[,k],                    rfobj$forest$bestvar[,k],                    rfobj$forest$xbestsplit[,k],                    rfobj$forest$nodestatus[,k],                    rfobj$forest$nodepred[,k])[1:rfobj$forest$ndbigtree[k],]  }        dimnames(tree) <- list(1:nrow(tree), c("left daughter", "right daughter",                                         "split var", "split point",                                         "status", "prediction"))  if (labelVar) {      tree <- as.data.frame(tree)      v <- tree[[3]]      v[v == 0] <- NA      tree[[3]] <- factor(rownames(rfobj$importance)[v])      if (rfobj$type == "classification") {          v <- tree[[6]]          v[! v %in% 1:nlevels(rfobj$y)] <- NA          tree[[6]] <- levels(rfobj$y)[v]      }  }  tree}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -