📄 mexrect2grid.m
字号:
function [result, error_norm] = mexrect2grid(z, zrect, theCorners, theSize)% mexrect2grid -- Orthogonal grid from RECT result via mex-files.% [result, error_norm] = mexrect2grid(z, zrect, theCorners, theSize)% produces a curvilinear orthogonal grid by interpolating the% complex contour z, using zrect, the result of applying the% conformal mapper RECT to z for theCorners (indices). If zrect% is empty, the RECT routine is called to compute it. If zrect% is a scalar, that number of RECT iterations will be performed.% The size of the w output grid (complex matrix), including the% perimeter, is determined by theSize. The returned error_norm% is the norm of the respective laplacians. This routine uses% the "mexrect" and "mexsepeli" mex-files if available; otherwise,% it calls the "rect" and "fps" m-files.% mexrect2grid(nPoints) demonstrates itself with a random z contour% of nPoints (default = 20). % Copyright (C) 1998 Dr. Charles R. Denham, ZYDECO.% All Rights Reserved.% Disclosure without explicit written consent from the% copyright owner does not constitute publication. % Version of 21-Oct-1998 20:50:16.% Updated 09-Jun-1999 10:24:25.if nargin < 1, help(mfilename), z = 'demo'; endif isequal(z, 'demo'), z = 20; endif ischar(z), z = eval(z); endif length(z) == 1 n = z; z = rand(n, 1) + sqrt(-1)*rand(n, 1); z = z - mean(z); a = angle(z); [a, i] = sort(a); jitter = 0.1; z = (1 + jitter * rand(size(a))) .* exp(sqrt(-1)*a); [ignore, nn] = sort(rand(1, length(z)-1)); theCorners = sort([1 nn(1:3)+1]); theSize = 2*[n n]; zrect = []; tic [w, err] = feval(mfilename, z, zrect, theCorners, ceil(theSize/2)); disp([' ## Elapsed time: ' num2str(toc) ' seconds.']) if ~isempty(w) u = real(w); v = imag(w); u_err = real(err); v_err = imag(err); x = real(z); y = imag(z); x = [x; x(1)]; y = [y; y(1)]; % Make closed curve. u1 = u(:, 2:end-1); % Trim the grid. v1 = v(:, 2:end-1); u2 = u(2:end-1, :).'; v2 = v(2:end-1, :).'; h = plot(u1, v1, 'g-', u2, v2, 'b-'); hold on plot(x, y, 'r-', ... x(theCorners), y(theCorners), 'ro', ... x(theCorners(1)), y(theCorners(1)), 'r*') hold off xlabel('x'), ylabel('y') theCommand = [mfilename ' ( ' int2str(n) ' )']; title(theCommand) set(gcf, 'ButtonDownFcn', theCommand) figure(gcf) axis equal zoomsafe 0.9, zoomsafe end error_norm = [real(err) imag(err)]; if nargout > 0 result = w; else disp([' ## error_norm = ' sprintf('%0.4g %0.4gi', error_norm)]) end returnend% Check for mex-files "mexrect" and "mexsepeli".hasMex = (exist('mexrect', 'file') == 3) & ... (exist('mexsepeli', 'file') == 3);% If no actual "zrect" is given, apply RECT until% the straightness of the result deviates from% 1.0 by no more than 0.1 percent.if length(zrect) < 2 if length(zrect) == 1 ntimes = zrect; else ntimes = ceil(sqrt(length(z))); end zrect = z(:); tolerance = 0.001; for i = 1:ntimes if ~hasMex [zrect, straight] = feval('rect', zrect, 1, theCorners); else zrect = feval('mexrect', zrect, length(zrect), ... theCorners(1), theCorners(2), theCorners(3), theCorners(4)); ztemp = zrect; ztemp(end+1) = ztemp(1); ctemp = theCorners; ctemp(end+1) = ctemp(1); num = sum(abs(diff(ztemp(ctemp)))); den = sum(abs(diff(ztemp))); straight = num./den; end if norm(1-straight) <= tolerance, break, end disp([' ## RECT Iteration ' int2str(i) ... ': straightness = ' num2str(straight*100) ' percent.']) end if norm(1-straight) > tolerance disp([' ## rect2grid: Conformal mapping not successful']) disp([' after ' int2str(ntimes) ' iterations.']) if nargout > 0, result = []; error_norm = []; end return endend% Desired size.if length(theSize) == 1, theSize = theSize * [1 1]; endm = theSize(1); n = theSize(2);% Get indices of matrix perimeter.temp = zeros(theSize);temp(:) = 1:prod(theSize);ind = [];ind = [ind; temp(1:m-1, 1)];ind = [ind; temp(m, 1:n-1).'];ind = [ind; temp(m:-1:2, n)];ind = [ind; temp(1, n:-1:1).'];% Interpolate around the "zrect" boundary% as a function of distance along the physical% boundary.zrect = zrect(:).';zrect(end+1) = zrect(1);rdist = [0 cumsum(abs(diff(zrect)))];rdist = rdist - min(rdist); rdist = rdist / max(rdist);z = z(:).';z(end+1) = z(1);c = theCorners;c(end+1) = length(z);d = cumsum([1 m-1 n-1 m-1 n-1]); % Corners around the matrix.zi = zeros(size(ind));slopeFlag = 1;for i = 1:4 j = c(i):c(i+1); % Data corners. k = d(i):d(i+1); % Matrix corners. rd = rdist(j); rd = rd - min(rd); rd = rd / max(rd); if i == 1 pp = splinep(linspace(0, 1, length(rd)), rd, slopeFlag); rd1 = ppval(pp, linspace(0, 1, m)); pp = splinep(rd, z(j), slopeFlag); zi(k) = ppval(pp, rd1); elseif i == 2 pp = splinep(linspace(0, 1, length(rd)), rd, slopeFlag); rd2 = ppval(pp, linspace(0, 1, n)); pp = splinep(rd, z(j), slopeFlag); zi(k) = ppval(pp, rd2); elseif i == 3 pp = splinep(rd, z(j), slopeFlag); zi(k) = ppval(pp, fliplr(1 - rd1)); elseif i == 4 pp = splinep(rd, z(j), slopeFlag); zi(k) = ppval(pp, fliplr(1 - rd2)); endend% Sprinkle interpolated values along the perimeter.u = zeros(theSize); v = zeros(theSize);u(ind) = real(zi); v(ind) = imag(zi);% Aspect ratio of the rectangle.if (1) dx = 1; dy = 1; % Square.else dx = abs(zrect(2)-zrect(1)) / m; % Rectangle. dy = abs(zrect(3)-zrect(2)) / n; % Rectangle.end% Solve Laplace's equation inside the boundary.if ~hasMex isSlope = 0; u = feval('fps', u, isSlope, dx, dy); v = feval('fps', v, isSlope, dx, dy);else % Use MEXSEPELI. l2 = m-1; m2 = n-1; seta = rdist(c(2):c(3)); sxi = rdist(c(1):c(2)); [u, v] = feval('mexsepeli', u, v, l2, m2, seta, sxi);endw = u + sqrt(-1)*v;if nargout > 0 result = w;else disp(w)endif nargout > 1 del2_u = 4*del2(u); err_norm_u = norm(del2_u(2:end-1, 2:end-1)); del2_v = 4*del2(v); err_norm_v = norm(del2_v(2:end-1, 2:end-1)); error_norm = err_norm_u + sqrt(-1).*err_norm_v;end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -