⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mexrect2grid.m

📁 任意边界结构正交曲线网格生成程序
💻 M
字号:
function [result, error_norm] = mexrect2grid(z, zrect, theCorners, theSize)% mexrect2grid -- Orthogonal grid from RECT result via mex-files.%  [result, error_norm] = mexrect2grid(z, zrect, theCorners, theSize)%   produces a curvilinear orthogonal grid by interpolating the%   complex contour z, using zrect, the result of applying the%   conformal mapper RECT to z for theCorners (indices).  If zrect%   is empty, the RECT routine is called to compute it.  If zrect%   is a scalar, that number of RECT iterations will be performed.%   The size of the w output grid (complex matrix), including the%   perimeter, is determined by theSize.  The returned error_norm%   is the norm of the respective laplacians.  This routine uses%   the "mexrect" and "mexsepeli" mex-files if available; otherwise,%   it calls the "rect" and "fps" m-files.%  mexrect2grid(nPoints) demonstrates itself with a random z contour%   of nPoints (default = 20). % Copyright (C) 1998 Dr. Charles R. Denham, ZYDECO.%  All Rights Reserved.%   Disclosure without explicit written consent from the%    copyright owner does not constitute publication. % Version of 21-Oct-1998 20:50:16.% Updated    09-Jun-1999 10:24:25.if nargin < 1, help(mfilename), z = 'demo'; endif isequal(z, 'demo'), z = 20; endif ischar(z), z = eval(z); endif length(z) == 1	n = z;	z = rand(n, 1) + sqrt(-1)*rand(n, 1);	z = z - mean(z);	a = angle(z);	[a, i] = sort(a);	jitter = 0.1;	z = (1 + jitter * rand(size(a))) .* exp(sqrt(-1)*a);	[ignore, nn] = sort(rand(1, length(z)-1));	theCorners = sort([1 nn(1:3)+1]);	theSize = 2*[n n];	zrect = [];	tic	[w, err] = feval(mfilename, z, zrect, theCorners, ceil(theSize/2));	disp([' ## Elapsed time: ' num2str(toc) ' seconds.'])	if ~isempty(w)		u = real(w); v = imag(w);		u_err = real(err); v_err = imag(err);		x = real(z); y = imag(z);		x = [x; x(1)]; y = [y; y(1)];  % Make closed curve.		u1 = u(:, 2:end-1);   % Trim the grid.		v1 = v(:, 2:end-1);		u2 = u(2:end-1, :).';		v2 = v(2:end-1, :).';		h = plot(u1, v1, 'g-', u2, v2, 'b-');		hold on		plot(x, y, 'r-', ...				x(theCorners), y(theCorners), 'ro', ...				x(theCorners(1)), y(theCorners(1)), 'r*')		hold off		xlabel('x'), ylabel('y')		theCommand = [mfilename ' ( ' int2str(n) ' )'];		title(theCommand)		set(gcf, 'ButtonDownFcn', theCommand)		figure(gcf)		axis equal		zoomsafe 0.9, zoomsafe	end	error_norm = [real(err) imag(err)];	if nargout > 0		result = w;	else		disp([' ## error_norm = ' sprintf('%0.4g %0.4gi', error_norm)])	end	returnend% Check for mex-files "mexrect" and "mexsepeli".hasMex = (exist('mexrect', 'file') == 3) & ...			(exist('mexsepeli', 'file') == 3);% If no actual "zrect" is given, apply RECT until%  the straightness of the result deviates from%  1.0 by no more than 0.1 percent.if length(zrect) < 2	if length(zrect) == 1		ntimes = zrect;	else		ntimes = ceil(sqrt(length(z)));	end	zrect = z(:);	tolerance = 0.001;	for i = 1:ntimes		if ~hasMex			[zrect, straight] = feval('rect', zrect, 1, theCorners);		else			zrect = feval('mexrect', zrect, length(zrect), ...				theCorners(1), theCorners(2), theCorners(3), theCorners(4));			ztemp = zrect;			ztemp(end+1) = ztemp(1);			ctemp = theCorners;			ctemp(end+1) = ctemp(1);			num = sum(abs(diff(ztemp(ctemp))));			den = sum(abs(diff(ztemp)));			straight = num./den;		end		if norm(1-straight) <= tolerance, break, end		disp([' ## RECT Iteration ' int2str(i) ...				': straightness = ' num2str(straight*100) ' percent.'])	end	if norm(1-straight) > tolerance		disp([' ## rect2grid: Conformal mapping not successful'])		disp(['               after ' int2str(ntimes) ' iterations.'])		if nargout > 0, result = []; error_norm = []; end		return	endend% Desired size.if length(theSize) == 1, theSize = theSize * [1 1]; endm = theSize(1); n = theSize(2);% Get indices of matrix perimeter.temp = zeros(theSize);temp(:) = 1:prod(theSize);ind = [];ind = [ind; temp(1:m-1, 1)];ind = [ind; temp(m, 1:n-1).'];ind = [ind; temp(m:-1:2, n)];ind = [ind; temp(1, n:-1:1).'];% Interpolate around the "zrect" boundary%  as a function of distance along the physical%  boundary.zrect = zrect(:).';zrect(end+1) = zrect(1);rdist = [0 cumsum(abs(diff(zrect)))];rdist = rdist - min(rdist); rdist = rdist / max(rdist);z = z(:).';z(end+1) = z(1);c = theCorners;c(end+1) = length(z);d = cumsum([1 m-1 n-1 m-1 n-1]);    % Corners around the matrix.zi = zeros(size(ind));slopeFlag = 1;for i = 1:4	j = c(i):c(i+1);   % Data corners.	k = d(i):d(i+1);   % Matrix corners.	rd = rdist(j); rd = rd - min(rd); rd = rd / max(rd);	if i == 1		pp = splinep(linspace(0, 1, length(rd)), rd, slopeFlag);		rd1 = ppval(pp, linspace(0, 1, m));		pp = splinep(rd, z(j), slopeFlag);		zi(k) = ppval(pp, rd1);	elseif i == 2		pp = splinep(linspace(0, 1, length(rd)), rd, slopeFlag);		rd2 = ppval(pp, linspace(0, 1, n));		pp = splinep(rd, z(j), slopeFlag);		zi(k) = ppval(pp, rd2);	elseif i == 3		pp = splinep(rd, z(j), slopeFlag);		zi(k) = ppval(pp, fliplr(1 - rd1));	elseif i == 4		pp = splinep(rd, z(j), slopeFlag);		zi(k) = ppval(pp, fliplr(1 - rd2));	endend% Sprinkle interpolated values along the perimeter.u = zeros(theSize); v = zeros(theSize);u(ind) = real(zi); v(ind) = imag(zi);% Aspect ratio of the rectangle.if (1)	dx = 1; dy = 1;   % Square.else	dx = abs(zrect(2)-zrect(1)) / m;   % Rectangle.	dy = abs(zrect(3)-zrect(2)) / n;   % Rectangle.end% Solve Laplace's equation inside the boundary.if ~hasMex	isSlope = 0;	u = feval('fps', u, isSlope, dx, dy);	v = feval('fps', v, isSlope, dx, dy);else   % Use MEXSEPELI.	l2 = m-1;	m2 = n-1;	seta = rdist(c(2):c(3));	sxi = rdist(c(1):c(2));	[u, v] = feval('mexsepeli', u, v, l2, m2, seta, sxi);endw = u + sqrt(-1)*v;if nargout > 0	result = w;else	disp(w)endif nargout > 1	del2_u = 4*del2(u);	err_norm_u = norm(del2_u(2:end-1, 2:end-1));	del2_v = 4*del2(v);	err_norm_v = norm(del2_v(2:end-1, 2:end-1));	error_norm = err_norm_u + sqrt(-1).*err_norm_v;end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -