📄 predtest.c
字号:
list_member_strip(((FuncExpr *) clause)->args, isnullarg) && func_strict(((FuncExpr *) clause)->funcid)) return true; /* foo IS NOT NULL refutes foo IS NULL */ if (clause && IsA(clause, NullTest) && ((NullTest *) clause)->nulltesttype == IS_NOT_NULL && equal(((NullTest *) clause)->arg, isnullarg)) return true; return false; /* we can't succeed below... */ } /* Try the clause-IS-NULL case */ if (clause && IsA(clause, NullTest) && ((NullTest *) clause)->nulltesttype == IS_NULL) { Expr *isnullarg = ((NullTest *) clause)->arg; /* row IS NULL does not act in the simple way we have in mind */ if (type_is_rowtype(exprType((Node *) isnullarg))) return false; /* foo IS NULL refutes foo IS NOT NULL */ if (predicate && IsA(predicate, NullTest) && ((NullTest *) predicate)->nulltesttype == IS_NOT_NULL && equal(((NullTest *) predicate)->arg, isnullarg)) return true; return false; /* we can't succeed below... */ } /* Else try btree operator knowledge */ return btree_predicate_proof(predicate, clause, true);}/* * If clause asserts the non-truth of a subclause, return that subclause; * otherwise return NULL. */static Node *extract_not_arg(Node *clause){ if (clause == NULL) return NULL; if (IsA(clause, BoolExpr)) { BoolExpr *bexpr = (BoolExpr *) clause; if (bexpr->boolop == NOT_EXPR) return (Node *) linitial(bexpr->args); } else if (IsA(clause, BooleanTest)) { BooleanTest *btest = (BooleanTest *) clause; if (btest->booltesttype == IS_NOT_TRUE || btest->booltesttype == IS_FALSE || btest->booltesttype == IS_UNKNOWN) return (Node *) btest->arg; } return NULL;}/* * Check whether an Expr is equal() to any member of a list, ignoring * any top-level RelabelType nodes. This is legitimate for the purposes * we use it for (matching IS [NOT] NULL arguments to arguments of strict * functions) because RelabelType doesn't change null-ness. It's helpful * for cases such as a varchar argument of a strict function on text. */static boollist_member_strip(List *list, Expr *datum){ ListCell *cell; if (datum && IsA(datum, RelabelType)) datum = ((RelabelType *) datum)->arg; foreach(cell, list) { Expr *elem = (Expr *) lfirst(cell); if (elem && IsA(elem, RelabelType)) elem = ((RelabelType *) elem)->arg; if (equal(elem, datum)) return true; } return false;}/* * Define an "operator implication table" for btree operators ("strategies"), * and a similar table for refutation. * * The strategy numbers defined by btree indexes (see access/skey.h) are: * (1) < (2) <= (3) = (4) >= (5) > * and in addition we use (6) to represent <>. <> is not a btree-indexable * operator, but we assume here that if an equality operator of a btree * opfamily has a negator operator, the negator behaves as <> for the opfamily. * * The interpretation of: * * test_op = BT_implic_table[given_op-1][target_op-1] * * where test_op, given_op and target_op are strategy numbers (from 1 to 6) * of btree operators, is as follows: * * If you know, for some ATTR, that "ATTR given_op CONST1" is true, and you * want to determine whether "ATTR target_op CONST2" must also be true, then * you can use "CONST2 test_op CONST1" as a test. If this test returns true, * then the target expression must be true; if the test returns false, then * the target expression may be false. * * For example, if clause is "Quantity > 10" and pred is "Quantity > 5" * then we test "5 <= 10" which evals to true, so clause implies pred. * * Similarly, the interpretation of a BT_refute_table entry is: * * If you know, for some ATTR, that "ATTR given_op CONST1" is true, and you * want to determine whether "ATTR target_op CONST2" must be false, then * you can use "CONST2 test_op CONST1" as a test. If this test returns true, * then the target expression must be false; if the test returns false, then * the target expression may be true. * * For example, if clause is "Quantity > 10" and pred is "Quantity < 5" * then we test "5 <= 10" which evals to true, so clause refutes pred. * * An entry where test_op == 0 means the implication cannot be determined. */#define BTLT BTLessStrategyNumber#define BTLE BTLessEqualStrategyNumber#define BTEQ BTEqualStrategyNumber#define BTGE BTGreaterEqualStrategyNumber#define BTGT BTGreaterStrategyNumber#define BTNE 6static const StrategyNumber BT_implic_table[6][6] = {/* * The target operator: * * LT LE EQ GE GT NE */ {BTGE, BTGE, 0, 0, 0, BTGE}, /* LT */ {BTGT, BTGE, 0, 0, 0, BTGT}, /* LE */ {BTGT, BTGE, BTEQ, BTLE, BTLT, BTNE}, /* EQ */ {0, 0, 0, BTLE, BTLT, BTLT}, /* GE */ {0, 0, 0, BTLE, BTLE, BTLE}, /* GT */ {0, 0, 0, 0, 0, BTEQ} /* NE */};static const StrategyNumber BT_refute_table[6][6] = {/* * The target operator: * * LT LE EQ GE GT NE */ {0, 0, BTGE, BTGE, BTGE, 0}, /* LT */ {0, 0, BTGT, BTGT, BTGE, 0}, /* LE */ {BTLE, BTLT, BTNE, BTGT, BTGE, BTEQ}, /* EQ */ {BTLE, BTLT, BTLT, 0, 0, 0}, /* GE */ {BTLE, BTLE, BTLE, 0, 0, 0}, /* GT */ {0, 0, BTEQ, 0, 0, 0} /* NE */};/* * btree_predicate_proof * Does the predicate implication or refutation test for a "simple clause" * predicate and a "simple clause" restriction, when both are simple * operator clauses using related btree operators. * * When refute_it == false, we want to prove the predicate true; * when refute_it == true, we want to prove the predicate false. * (There is enough common code to justify handling these two cases * in one routine.) We return TRUE if able to make the proof, FALSE * if not able to prove it. * * What we look for here is binary boolean opclauses of the form * "foo op constant", where "foo" is the same in both clauses. The operators * and constants can be different but the operators must be in the same btree * operator family. We use the above operator implication tables to * derive implications between nonidentical clauses. (Note: "foo" is known * immutable, and constants are surely immutable, but we have to check that * the operators are too. As of 8.0 it's possible for opfamilies to contain * operators that are merely stable, and we dare not make deductions with * these.) */static boolbtree_predicate_proof(Expr *predicate, Node *clause, bool refute_it){ Node *leftop, *rightop; Node *pred_var, *clause_var; Const *pred_const, *clause_const; bool pred_var_on_left, clause_var_on_left, pred_op_negated; Oid pred_op, clause_op, pred_op_negator, clause_op_negator, test_op = InvalidOid; Oid opfamily_id; bool found = false; StrategyNumber pred_strategy, clause_strategy, test_strategy; Oid clause_righttype; Expr *test_expr; ExprState *test_exprstate; Datum test_result; bool isNull; CatCList *catlist; int i; EState *estate; MemoryContext oldcontext; /* * Both expressions must be binary opclauses with a Const on one side, and * identical subexpressions on the other sides. Note we don't have to * think about binary relabeling of the Const node, since that would have * been folded right into the Const. * * If either Const is null, we also fail right away; this assumes that the * test operator will always be strict. */ if (!is_opclause(predicate)) return false; leftop = get_leftop(predicate); rightop = get_rightop(predicate); if (rightop == NULL) return false; /* not a binary opclause */ if (IsA(rightop, Const)) { pred_var = leftop; pred_const = (Const *) rightop; pred_var_on_left = true; } else if (IsA(leftop, Const)) { pred_var = rightop; pred_const = (Const *) leftop; pred_var_on_left = false; } else return false; /* no Const to be found */ if (pred_const->constisnull) return false; if (!is_opclause(clause)) return false; leftop = get_leftop((Expr *) clause); rightop = get_rightop((Expr *) clause); if (rightop == NULL) return false; /* not a binary opclause */ if (IsA(rightop, Const)) { clause_var = leftop; clause_const = (Const *) rightop; clause_var_on_left = true; } else if (IsA(leftop, Const)) { clause_var = rightop; clause_const = (Const *) leftop; clause_var_on_left = false; } else return false; /* no Const to be found */ if (clause_const->constisnull) return false; /* * Check for matching subexpressions on the non-Const sides. We used to * only allow a simple Var, but it's about as easy to allow any * expression. Remember we already know that the pred expression does not * contain any non-immutable functions, so identical expressions should * yield identical results. */ if (!equal(pred_var, clause_var)) return false; /* * Okay, get the operators in the two clauses we're comparing. Commute * them if needed so that we can assume the variables are on the left. */ pred_op = ((OpExpr *) predicate)->opno; if (!pred_var_on_left) { pred_op = get_commutator(pred_op); if (!OidIsValid(pred_op)) return false; } clause_op = ((OpExpr *) clause)->opno; if (!clause_var_on_left) { clause_op = get_commutator(clause_op); if (!OidIsValid(clause_op)) return false; } /* * Try to find a btree opfamily containing the needed operators. * * We must find a btree opfamily that contains both operators, else the * implication can't be determined. Also, the opfamily must contain a * suitable test operator taking the pred_const and clause_const * datatypes. * * If there are multiple matching opfamilies, assume we can use any one to * determine the logical relationship of the two operators and the correct * corresponding test operator. This should work for any logically * consistent opfamilies. */ catlist = SearchSysCacheList(AMOPOPID, 1, ObjectIdGetDatum(pred_op), 0, 0, 0); /* * If we couldn't find any opfamily containing the pred_op, perhaps it is * a <> operator. See if it has a negator that is in an opfamily. */ pred_op_negated = false; if (catlist->n_members == 0) { pred_op_negator = get_negator(pred_op); if (OidIsValid(pred_op_negator)) { pred_op_negated = true; ReleaseSysCacheList(catlist); catlist = SearchSysCacheList(AMOPOPID, 1, ObjectIdGetDatum(pred_op_negator), 0, 0, 0); } } /* Also may need the clause_op's negator */ clause_op_negator = get_negator(clause_op); /* Now search the opfamilies */ for (i = 0; i < catlist->n_members; i++) { HeapTuple pred_tuple = &catlist->members[i]->tuple; Form_pg_amop pred_form = (Form_pg_amop) GETSTRUCT(pred_tuple); HeapTuple clause_tuple; /* Must be btree */ if (pred_form->amopmethod != BTREE_AM_OID) continue; /* Get the predicate operator's btree strategy number */ opfamily_id = pred_form->amopfamily; pred_strategy = (StrategyNumber) pred_form->amopstrategy; Assert(pred_strategy >= 1 && pred_strategy <= 5); if (pred_op_negated) { /* Only consider negators that are = */ if (pred_strategy != BTEqualStrategyNumber) continue; pred_strategy = BTNE; } /* * From the same opfamily, find a strategy number for the clause_op, * if possible */ clause_tuple = SearchSysCache(AMOPOPID, ObjectIdGetDatum(clause_op), ObjectIdGetDatum(opfamily_id), 0, 0); if (HeapTupleIsValid(clause_tuple)) { Form_pg_amop clause_form = (Form_pg_amop) GETSTRUCT(clause_tuple); /* Get the restriction clause operator's strategy/datatype */ clause_strategy = (StrategyNumber) clause_form->amopstrategy; Assert(clause_strategy >= 1 && clause_strategy <= 5); Assert(clause_form->amoplefttype == pred_form->amoplefttype); clause_righttype = clause_form->amoprighttype; ReleaseSysCache(clause_tuple); } else if (OidIsValid(clause_op_negator)) { clause_tuple = SearchSysCache(AMOPOPID, ObjectIdGetDatum(clause_op_negator), ObjectIdGetDatum(opfamily_id), 0, 0); if (HeapTupleIsValid(clause_tuple)) { Form_pg_amop clause_form = (Form_pg_amop) GETSTRUCT(clause_tuple); /* Get the restriction clause operator's strategy/datatype */ clause_strategy = (StrategyNumber) clause_form->amopstrategy; Assert(clause_strategy >= 1 && clause_strategy <= 5); Assert(clause_form->amoplefttype == pred_form->amoplefttype); clause_righttype = clause_form->amoprighttype; ReleaseSysCache(clause_tuple); /* Only consider negators that are = */ if (clause_strategy != BTEqualStrategyNumber) continue; clause_strategy = BTNE; } else continue; } else continue; /* * Look up the "test" strategy number in the implication table */ if (refute_it) test_strategy = BT_refute_table[clause_strategy - 1][pred_strategy - 1]; else test_strategy = BT_implic_table[clause_strategy - 1][pred_strategy - 1]; if (test_strategy == 0) { /* Can't determine implication using this interpretation */ continue; } /* * See if opfamily has an operator for the test strategy and the * datatypes. */ if (test_strategy == BTNE) { test_op = get_opfamily_member(opfamily_id, pred_form->amoprighttype, clause_righttype, BTEqualStrategyNumber); if (OidIsValid(test_op)) test_op = get_negator(test_op); } else { test_op = get_opfamily_member(opfamily_id, pred_form->amoprighttype, clause_righttype, test_strategy); } if (OidIsValid(test_op)) { /* * Last check: test_op must be immutable. * * Note that we require only the test_op to be immutable, not the * original clause_op. (pred_op is assumed to have been checked * immutable by the caller.) Essentially we are assuming that the * opfamily is consistent even if it contains operators that are * merely stable. */ if (op_volatile(test_op) == PROVOLATILE_IMMUTABLE) { found = true; break; } } } ReleaseSysCacheList(catlist); if (!found) { /* couldn't find a btree opfamily to interpret the operators */ return false; } /* * Evaluate the test. For this we need an EState. */ estate = CreateExecutorState(); /* We can use the estate's working context to avoid memory leaks. */ oldcontext = MemoryContextSwitchTo(estate->es_query_cxt); /* Build expression tree */ test_expr = make_opclause(test_op, BOOLOID, false, (Expr *) pred_const, (Expr *) clause_const); /* Prepare it for execution */ test_exprstate = ExecPrepareExpr(test_expr, estate); /* And execute it. */ test_result = ExecEvalExprSwitchContext(test_exprstate, GetPerTupleExprContext(estate), &isNull, NULL); /* Get back to outer memory context */ MemoryContextSwitchTo(oldcontext); /* Release all the junk we just created */ FreeExecutorState(estate); if (isNull) { /* Treat a null result as non-proof ... but it's a tad fishy ... */ elog(DEBUG2, "null predicate test result"); return false; } return DatumGetBool(test_result);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -