📄 heaptuple.c
字号:
* the same attribute descriptor will go much quicker. -cim 5/4/91 * * NOTE: if you need to change this code, see also heap_deform_tuple. * Also see nocache_index_getattr, which is the same code for index * tuples. * ---------------- */Datumnocachegetattr(HeapTuple tuple, int attnum, TupleDesc tupleDesc, bool *isnull){ HeapTupleHeader tup = tuple->t_data; Form_pg_attribute *att = tupleDesc->attrs; char *tp; /* ptr to data part of tuple */ bits8 *bp = tup->t_bits; /* ptr to null bitmap in tuple */ bool slow = false; /* do we have to walk attrs? */ int off; /* current offset within data */ (void) isnull; /* not used */ /* ---------------- * Three cases: * * 1: No nulls and no variable-width attributes. * 2: Has a null or a var-width AFTER att. * 3: Has nulls or var-widths BEFORE att. * ---------------- */#ifdef IN_MACRO/* This is handled in the macro */ Assert(attnum > 0); if (isnull) *isnull = false;#endif attnum--; if (HeapTupleNoNulls(tuple)) {#ifdef IN_MACRO/* This is handled in the macro */ if (att[attnum]->attcacheoff >= 0) { return fetchatt(att[attnum], (char *) tup + tup->t_hoff + att[attnum]->attcacheoff); }#endif } else { /* * there's a null somewhere in the tuple * * check to see if desired att is null */#ifdef IN_MACRO/* This is handled in the macro */ if (att_isnull(attnum, bp)) { if (isnull) *isnull = true; return (Datum) NULL; }#endif /* * Now check to see if any preceding bits are null... */ { int byte = attnum >> 3; int finalbit = attnum & 0x07; /* check for nulls "before" final bit of last byte */ if ((~bp[byte]) & ((1 << finalbit) - 1)) slow = true; else { /* check for nulls in any "earlier" bytes */ int i; for (i = 0; i < byte; i++) { if (bp[i] != 0xFF) { slow = true; break; } } } } } tp = (char *) tup + tup->t_hoff; if (!slow) { /* * If we get here, there are no nulls up to and including the target * attribute. If we have a cached offset, we can use it. */ if (att[attnum]->attcacheoff >= 0) { return fetchatt(att[attnum], tp + att[attnum]->attcacheoff); } /* * Otherwise, check for non-fixed-length attrs up to and including * target. If there aren't any, it's safe to cheaply initialize the * cached offsets for these attrs. */ if (HeapTupleHasVarWidth(tuple)) { int j; for (j = 0; j <= attnum; j++) { if (att[j]->attlen <= 0) { slow = true; break; } } } } if (!slow) { int natts = tupleDesc->natts; int j = 1; /* * If we get here, we have a tuple with no nulls or var-widths up to * and including the target attribute, so we can use the cached offset * ... only we don't have it yet, or we'd not have got here. Since * it's cheap to compute offsets for fixed-width columns, we take the * opportunity to initialize the cached offsets for *all* the leading * fixed-width columns, in hope of avoiding future visits to this * routine. */ att[0]->attcacheoff = 0; /* we might have set some offsets in the slow path previously */ while (j < natts && att[j]->attcacheoff > 0) j++; off = att[j - 1]->attcacheoff + att[j - 1]->attlen; for (; j < natts; j++) { if (att[j]->attlen <= 0) break; off = att_align_nominal(off, att[j]->attalign); att[j]->attcacheoff = off; off += att[j]->attlen; } Assert(j > attnum); off = att[attnum]->attcacheoff; } else { bool usecache = true; int i; /* * Now we know that we have to walk the tuple CAREFULLY. But we still * might be able to cache some offsets for next time. * * Note - This loop is a little tricky. For each non-null attribute, * we have to first account for alignment padding before the attr, * then advance over the attr based on its length. Nulls have no * storage and no alignment padding either. We can use/set * attcacheoff until we reach either a null or a var-width attribute. */ off = 0; for (i = 0;; i++) /* loop exit is at "break" */ { if (HeapTupleHasNulls(tuple) && att_isnull(i, bp)) { usecache = false; continue; /* this cannot be the target att */ } /* If we know the next offset, we can skip the rest */ if (usecache && att[i]->attcacheoff >= 0) off = att[i]->attcacheoff; else if (att[i]->attlen == -1) { /* * We can only cache the offset for a varlena attribute if the * offset is already suitably aligned, so that there would be * no pad bytes in any case: then the offset will be valid for * either an aligned or unaligned value. */ if (usecache && off == att_align_nominal(off, att[i]->attalign)) att[i]->attcacheoff = off; else { off = att_align_pointer(off, att[i]->attalign, -1, tp + off); usecache = false; } } else { /* not varlena, so safe to use att_align_nominal */ off = att_align_nominal(off, att[i]->attalign); if (usecache) att[i]->attcacheoff = off; } if (i == attnum) break; off = att_addlength_pointer(off, att[i]->attlen, tp + off); if (usecache && att[i]->attlen <= 0) usecache = false; } } return fetchatt(att[attnum], tp + off);}/* ---------------- * heap_getsysattr * * Fetch the value of a system attribute for a tuple. * * This is a support routine for the heap_getattr macro. The macro * has already determined that the attnum refers to a system attribute. * ---------------- */Datumheap_getsysattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull){ Datum result; Assert(tup); /* Currently, no sys attribute ever reads as NULL. */ if (isnull) *isnull = false; switch (attnum) { case SelfItemPointerAttributeNumber: /* pass-by-reference datatype */ result = PointerGetDatum(&(tup->t_self)); break; case ObjectIdAttributeNumber: result = ObjectIdGetDatum(HeapTupleGetOid(tup)); break; case MinTransactionIdAttributeNumber: result = TransactionIdGetDatum(HeapTupleHeaderGetXmin(tup->t_data)); break; case MaxTransactionIdAttributeNumber: result = TransactionIdGetDatum(HeapTupleHeaderGetXmax(tup->t_data)); break; case MinCommandIdAttributeNumber: case MaxCommandIdAttributeNumber: /* * cmin and cmax are now both aliases for the same field, which * can in fact also be a combo command id. XXX perhaps we should * return the "real" cmin or cmax if possible, that is if we are * inside the originating transaction? */ result = CommandIdGetDatum(HeapTupleHeaderGetRawCommandId(tup->t_data)); break; case TableOidAttributeNumber: result = ObjectIdGetDatum(tup->t_tableOid); break; default: elog(ERROR, "invalid attnum: %d", attnum); result = 0; /* keep compiler quiet */ break; } return result;}/* ---------------- * heap_copytuple * * returns a copy of an entire tuple * * The HeapTuple struct, tuple header, and tuple data are all allocated * as a single palloc() block. * ---------------- */HeapTupleheap_copytuple(HeapTuple tuple){ HeapTuple newTuple; if (!HeapTupleIsValid(tuple) || tuple->t_data == NULL) return NULL; newTuple = (HeapTuple) palloc(HEAPTUPLESIZE + tuple->t_len); newTuple->t_len = tuple->t_len; newTuple->t_self = tuple->t_self; newTuple->t_tableOid = tuple->t_tableOid; newTuple->t_data = (HeapTupleHeader) ((char *) newTuple + HEAPTUPLESIZE); memcpy((char *) newTuple->t_data, (char *) tuple->t_data, tuple->t_len); return newTuple;}/* ---------------- * heap_copytuple_with_tuple * * copy a tuple into a caller-supplied HeapTuple management struct * * Note that after calling this function, the "dest" HeapTuple will not be * allocated as a single palloc() block (unlike with heap_copytuple()). * ---------------- */voidheap_copytuple_with_tuple(HeapTuple src, HeapTuple dest){ if (!HeapTupleIsValid(src) || src->t_data == NULL) { dest->t_data = NULL; return; } dest->t_len = src->t_len; dest->t_self = src->t_self; dest->t_tableOid = src->t_tableOid; dest->t_data = (HeapTupleHeader) palloc(src->t_len); memcpy((char *) dest->t_data, (char *) src->t_data, src->t_len);}/* * heap_form_tuple * construct a tuple from the given values[] and isnull[] arrays, * which are of the length indicated by tupleDescriptor->natts * * The result is allocated in the current memory context. */HeapTupleheap_form_tuple(TupleDesc tupleDescriptor, Datum *values, bool *isnull){ HeapTuple tuple; /* return tuple */ HeapTupleHeader td; /* tuple data */ Size len, data_len; int hoff; bool hasnull = false; Form_pg_attribute *att = tupleDescriptor->attrs; int numberOfAttributes = tupleDescriptor->natts; int i; if (numberOfAttributes > MaxTupleAttributeNumber) ereport(ERROR, (errcode(ERRCODE_TOO_MANY_COLUMNS), errmsg("number of columns (%d) exceeds limit (%d)", numberOfAttributes, MaxTupleAttributeNumber))); /* * Check for nulls and embedded tuples; expand any toasted attributes in * embedded tuples. This preserves the invariant that toasting can only * go one level deep. * * We can skip calling toast_flatten_tuple_attribute() if the attribute * couldn't possibly be of composite type. All composite datums are * varlena and have alignment 'd'; furthermore they aren't arrays. Also, * if an attribute is already toasted, it must have been sent to disk * already and so cannot contain toasted attributes. */ for (i = 0; i < numberOfAttributes; i++) { if (isnull[i]) hasnull = true; else if (att[i]->attlen == -1 && att[i]->attalign == 'd' && att[i]->attndims == 0 && !VARATT_IS_EXTENDED(values[i])) { values[i] = toast_flatten_tuple_attribute(values[i], att[i]->atttypid, att[i]->atttypmod); } } /* * Determine total space needed */ len = offsetof(HeapTupleHeaderData, t_bits); if (hasnull) len += BITMAPLEN(numberOfAttributes); if (tupleDescriptor->tdhasoid) len += sizeof(Oid); hoff = len = MAXALIGN(len); /* align user data safely */ data_len = heap_compute_data_size(tupleDescriptor, values, isnull); len += data_len; /* * Allocate and zero the space needed. Note that the tuple body and * HeapTupleData management structure are allocated in one chunk. */ tuple = (HeapTuple) palloc0(HEAPTUPLESIZE + len); tuple->t_data = td = (HeapTupleHeader) ((char *) tuple + HEAPTUPLESIZE); /* * And fill in the information. Note we fill the Datum fields even though * this tuple may never become a Datum. */ tuple->t_len = len; ItemPointerSetInvalid(&(tuple->t_self)); tuple->t_tableOid = InvalidOid; HeapTupleHeaderSetDatumLength(td, len); HeapTupleHeaderSetTypeId(td, tupleDescriptor->tdtypeid); HeapTupleHeaderSetTypMod(td, tupleDescriptor->tdtypmod); HeapTupleHeaderSetNatts(td, numberOfAttributes); td->t_hoff = hoff; if (tupleDescriptor->tdhasoid) /* else leave infomask = 0 */ td->t_infomask = HEAP_HASOID; heap_fill_tuple(tupleDescriptor, values, isnull, (char *) td + hoff, data_len, &td->t_infomask, (hasnull ? td->t_bits : NULL)); return tuple;}/* ---------------- * heap_formtuple * * construct a tuple from the given values[] and nulls[] arrays * * Null attributes are indicated by a 'n' in the appropriate byte * of nulls[]. Non-null attributes are indicated by a ' ' (space). * * OLD API with char 'n'/' ' convention for indicating nulls * ---------------- */HeapTupleheap_formtuple(TupleDesc tupleDescriptor, Datum *values, char *nulls){ HeapTuple tuple; /* return tuple */ HeapTupleHeader td; /* tuple data */ Size len, data_len; int hoff; bool hasnull = false; Form_pg_attribute *att = tupleDescriptor->attrs; int numberOfAttributes = tupleDescriptor->natts; int i; if (numberOfAttributes > MaxTupleAttributeNumber) ereport(ERROR, (errcode(ERRCODE_TOO_MANY_COLUMNS), errmsg("number of columns (%d) exceeds limit (%d)", numberOfAttributes, MaxTupleAttributeNumber))); /* * Check for nulls and embedded tuples; expand any toasted attributes in * embedded tuples. This preserves the invariant that toasting can only * go one level deep. * * We can skip calling toast_flatten_tuple_attribute() if the attribute * couldn't possibly be of composite type. All composite datums are * varlena and have alignment 'd'; furthermore they aren't arrays. Also, * if an attribute is already toasted, it must have been sent to disk * already and so cannot contain toasted attributes. */ for (i = 0; i < numberOfAttributes; i++) { if (nulls[i] != ' ') hasnull = true; else if (att[i]->attlen == -1 && att[i]->attalign == 'd' &&
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -