⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sdmguide.ps

📁 这是matlab解2阶锥工具包
💻 PS
📖 第 1 页 / 共 5 页
字号:
(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)50b(30)75 2034 y(3.6.2)55 b(De\002nite)10 b(and)h(semi-de\002nite)g(inequalities)20 b(.)k(.)f(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)50 b(31)75 2090y(3.6.3)55 b(Feasibility)9 b(radius)25 b(.)f(.)f(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)50 b(32)-98 2192 yFB(4)c(W)m(ar)o(nings)11 b(f)o(or)h FA(M)r Fz(A)n(T)r(L)r(A)r(B)kFB(LMI)11 b(T)l(oolbox)f(users)957 b(33)-29 2248 y FA(4.1)47b(\223Left\224)12 b(and)f(\223right\224)f(sides)g(of)i(an)f(inequality)27 b(.)c(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)50 b(33)-29 2305y(4.2)d(Matrix)11 b(and)g(scalar)h(multipliers)d(for)i(inequality)e(terms)34 b(.)23 b(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)h(.)f(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)50 b(34)-98 2407 y FB(5)c(Conclusions)1540b(34)-98 2509 y(Refer)o(ences)1635 b(35)836 2951 y FA(1)peop%%Page: 2 32 2 bop 102 -80 a FC(1)59 b(Pur)o(pose)102 69 y FA(The)8b(tool)g(described)g(in)h(this)e(report)i(is)f(designed)g(to)g(associate)g(both)g(ef)o(\002cient)h(Semi-De\002nite)g(Programming)g(\(SDP\))102 126 y(algorithms)g(and)i(the)g(nice)g(Linear)g(Matrix)g(Constraint)f(\(LMIs)h(and)g(LMEs\))g(formalism)g(used)g(for)g(control)f(applica-)102 182 y(tions.)i(This)d(work)h(was)f(inspired)g(by)h(the)f(observ)o(ation)g(that)g(on)h(the)g(one)g(hand)g(Linear)f(Matrix)i(Constraints)d(\(LMCs\))102 239 y(ha)o(v)o(e)16 b(a)h(major)g(position)d(in)h(current)i(academic)g(research)g([6,)f(10,)h(27)o(],)h(and)f(on)f(the)g(other)g(hand)f(there)i(are)g(ne)o(w)102 295 y(promising)11b(tools)g(for)h(solving)f(relati)o(v)o(ely)g(lar)o(ge-scale)i(SDP)g(problems)f([20].)18 b(But)13 b(there)f(are)h(fe)o(w)g(tools)e(that)h(asso-)102 352 y(ciate)g(both)f(an)h(ef)o(\002cient)g(SDP)g(solv)o(er)g(and)g(a)g(pleasant)f(interface)h(for)g(declaring)g(LMC)g(problems)g(within)e(the)i(most)102 408 y(commonly)e(used)h(software)g(en)n(vironment:)i(M)r Fz(A)n(T)r(L)r(A)r(B)q FA(.)103 500y(S)r Fz(E)r FA(D)r Fz(U)r FA(M)r Fz(I)19 b FA(I)r Fz(N)r(T)r(E)r(R)r(F)o(A)r(C)r(E)g FA(is)14 b(designed)g(as)g(an)h(add-on)f(for)i(M)rFz(A)n(T)r(L)r(A)r(B)j FA(and)14 b(allo)o(ws)f(to)i(declare)g(LMC)g(problems)f(to)102 557 y(be)j(solv)o(ed)g(with)f(the)i(S)rFz(E)r FA(D)r Fz(U)r FA(M)r Fz(I)j FA(solv)o(er)c(proposed)f(by)h(Jos)g(Sturm)h([25)o(].)34 b(The)17 b(major)g(part)h(of)f(this)f(report)h(is)g(a)102 613 y(description)8 b(of)j(S)r Fz(E)r FA(D)rFz(U)r FA(M)r Fz(I)k FA(I)r Fz(N)r(T)r(E)r(R)r(F)o(A)r(C)r(E)fFA(functions.)f(Before)e(that,)f(we)g(e)o(xpose)g(the)g(choices)f(that)h(lead)g(us)f(to)h(choose)102 669 y(the)i(S)r Fz(E)rFA(D)r Fz(U)r FA(M)r Fz(I)j FA(solv)o(er)10 b(and)h(an)h(interface)e(much)i(alike)e(the)h(LMI)h(Control)e(T)l(oolbox)g(for)i(M)rFz(A)n(T)r(L)r(A)r(B)j FA([13].)102 761 y(The)8 b(user)h(mostly)f(interested)g(in)g(using)g(the)g(interface)h(can)g(skip)f(the)h(remaining)f(part)h(of)g(this)e(section)h(and)h(go)g(directly)102818 y(to)h(section)g(2.)102 1032 y Fn(1.1)50 b(Notations)1021166 y Fw(i)11 b FA(is)f(the)h(imaginary)g(unit)f(equal)h(to)g(the)f(square)h(root)g(of)g Fp(\000)p FA(1.)102 1222 y Fm(R)1311206 y Ft(m)p Fr(\002)p Ft(n)210 1222 y FA(\()p Fm(C)2551206 y Ft(m)p Fr(\002)p Ft(n)324 1222 y FA(\))h(is)f(the)f(set)h(of)hFw(m)p FA(-by-)p Fw(n)e FA(real)i(\(comple)o(x\))f(matrices.)1021279 y Fm(1)g FA(and)g Fm(0)h FA(are)g(respecti)o(v)o(ely)e(the)h(identity)e(and)i(the)g(zero)h(matrices)f(of)g(appropriate)f(dimensions.)102 1335 y(All)g(matrices)h(are)h(written)e(using)g(capital)h(letters)f(\()p Fw(A)p FA(\))i(while)e(scalars)h(and)g(v)o(ectors)g(are)h(in)f(lo)o(wercase)g(\()p Fw(a)p FA(\).)1111417 y(\257)102 1427 y Fw(A)j FA(is)g(the)h(conjugate)e(of)h(the)h(comple)o(x)f(matrix)h Fw(A)p FA(,)g Fw(A)960 1410 yFt(T)1000 1427 y FA(is)f(its)g(transpose)f(and)h Fw(A)13971410 y Fr(\003)1431 1427 y FA(is)g(its)f(conjugate)h(transpose.)23b(W)l(e)102 1483 y(remind)16 b(that)f(in)h(the)h(M)rFz(A)n(T)r(L)r(A)r(B)j FA(en)n(vironment)c(the)f(conjugate)g(transpose)g(writes)h(as)g Fx(A')h FA(while)e(the)h(transpose)f(is)1021540 y(obtained)10 b(by)i Fx(A.')p FA(.)18 b(If)13 bFw(A)d Fq(=)h Fw(A)581 1523 y Ft(T)606 1540 y FA(,)i(the)f(matrix)g(is)f(symmetric)i(and)f(Hermitian)f(if)h Fw(A)f Fq(=)g Fw(A)15031523 y Fr(\003)1521 1540 y FA(.)18 b(F)o(or)12 b(real)h(v)o(alued)e(matrices)102 1596 y(both)f(notions)f(are)j(equi)o(v)o(alent.)1021653 y('He')f(is)g(the)g(matrix)g(operator)g(such)f(that:)j(He)pFp(f)p Fw(A)p Fp(g)d Fq(=)g Fw(A)c Fq(+)g Fw(A)1072 1636y Fr(\003)1091 1653 y FA(.)102 1745 y(F)o(or)11 b(Hermitian)e(matrices,)j Fv(>)20 b Fq(\()p Fp(\025)p Fq(\))10 b FA(is)g(the)g(L)t(\250)-19 b(owner)10 b(partial)f(order)n(,)i(i.e.,)hFw(A)d Fv(>)h Fq(\()p Fp(\025)p Fq(\))p Fw(B)g FA(if)g(and)g(only)g(if)g Fw(A)c Fp(\000)g Fw(B)j FA(is)h(positi)o(v)o(e)1021801 y(\(semi\))h(de\002nite.)102 1893 y(In)17 b(matrix)h(equalities)e(and)h(inequalities)f(as)h(well)g(as)h(in)f(optimisation)e(problems,)k(the)f(decision)e(v)o(ariables)h(and)102 1949 y(unkno)o(wns)9b(are)j(in)e(bold)g(face)i(\()p FB(x)p FA(\))f(while)g(the)g(data)g(is)f(written)h(using)e(the)i(usual)g(mathematic)g(fonts)f(\()pFw(x)p FA(\).)102 2041 y(Note)17 b(that)g(in)g(the)h(M)rFz(A)n(T)r(L)r(A)r(B)k FA(en)n(vironment)16 b(real)i(inte)o(gers)f(are)h(nicely)f(displayed)f(as)i(follo)o(ws,)g(while)f(comple)o(x)1022098 y(inte)o(gers)10 b(are)i(displayed)e(as)h(an)o(y)g(other)g(comple)o(x)g(number:)p 102 2149 1886 2 v 101 2483 2 334 v 1272205 a FF(>>)21 b(2)127 2255 y(ans)g(=)232 2304 y(2)1272354 y(>>)g(2+2i)127 2404 y(ans)g(=)190 2454 y(2.0000)h(+)g(2.0000i)p1986 2483 V 102 2484 1886 2 v 102 2555 a FA(Therefore,)12b(the)f Fx(num2str)j FA(M)r Fz(A)n(T)r(L)r(A)r(B)i FA(function)10b(will)g(sometimes)h(appear)h(for)g(nice)f(display)m(.)j(The)d(result)g(is)g(a)h(string)102 2611 y(that)e(cannot)h(be)g(used)g(for)g(computation.)p 102 2662 V 101 2848 2 186 v 127 2720a FF(>>)21 b(num2str\(2+2i\))127 2769 y(ans)g(=)127 2819y(2+2i)p 1986 2848 V 102 2850 1886 2 v 1035 2951 a FA(2)peop%%Page: 3 43 3 bop -98 -80 a Fn(1.2)50 b(LMC)13 b(pr)o(oblems)-9843 y FA(The)e(academic)h(results)e(on)h(LMIs)h(use)f(the)f(follo)o(wing)f(optimisation)g(formalism)i([6,)h(10)o(]:)395174 y Fw(p)418 155 y Ft(o)r(p)o(t)477 174 y Fq(=)e FA(min)39b Fw(c)652 155 y Ft(T)677 174 y FB(x)118 b Fw(s)p Fv(:)oFw(t)s Fv(:)e Fw(F)1016 181 y FI(0)1041 174 y Fq(+)1100125 y Ft(m)1088 183 y Fj(\345)1087 220 y Ft(j)q Fl(=)pFI(1)1146 174 y FB(x)1169 181 y Fi(j)1181 174 y Fw(F)1209181 y Ft(j)1232 174 y Fp(\025)10 b Fm(0)437 b FA(\(1\))-98316 y(where)16 b(the)g(data)g(are)g(the)g Fw(m)7 b Fq(+)iFA(1)16 b(symmetric)f(matrices)h Fw(F)859 323 y FI(0)878316 y FA(,)i(...,)g Fw(F)992 323 y Ft(m)1035 316 y FA(and)d(the)h(column)f(v)o(ector)h Fw(c)p FA(,)i(while)d(the)g(opti-)-98372 y(misation)e(v)o(ariables)h(are)h(gathered)f(in)f(the)h(v)o(ector)hFB(x)f FA(with)f(components)h FB(x)1129 379 y Fi(j)1141372 y FA(.)24 b(The)14 b(formalism)h(underlines)e(that)g(an)-98429 y(LMI)i(problem)g(is)f(an)g(optimisation)e(problem)j(with)e(a)i(linear)f(objecti)o(v)o(e)g(and)g(positi)o(v)o(e)f(semi-de\002nite)h(constraints)-98 485 y(in)n(v)o(olving)9 b(symmetric)j(matrices)f(that)f(are)i(af)o(\002ne)g(in)f(the)g(decision)f(v)o(ariables.)-98577 y(At)h(this)f(point)g(note)h(that)f(there)h(is)g(another)g(general)g(formalism)g(for)h(writing)d(LMIs)j([25)o(]:)261 682y Fw(p)284 664 y Ft(o)r(p)o(t)343 682 y Fq(=)e FA(min)39b Fw(c)518 664 y Ft(T)543 682 y FB(x)118 b Fw(s)p Fv(:)oFw(t)s Fv(:)f Fw(b)6 b Fp(\000)g Fw(A)p FB(x)23 b FA(is)10b(positi)o(v)o(e)g(semi-de\002nite)-98 788 y(Here)g(the)e(data)h(are)g(two)f(v)o(ectors)h Fw(b)p FA(,)g Fw(c)g FA(and)g(a)g(matrix)gFw(A)p FA(.)k(The)c(e)o(xpression)e(is)i(of)g(course)f(ab)o(usi)o(v)o(e.)13 b(A)c(v)o(ector)g Fw(z)e Fq(=)h Fw(b)t Fp(\000)tFw(A)p FB(x)-98 844 y FA(is)k(said)f(to)g(be)h(positi)o(v)o(e)e(semi-de\002nite)i(if)f(the)h(symmetric)g(matrix)f Fw(Z)rFA(,)i(b)o(uild)e(out)g(of)h Fw(z)g FA(with)e(some)i(stack)g(operator)n(,)g(is)-98 901 y(positi)o(v)o(e)e(semi-de\002nite.)-98993 y(W)l(e)k(do)g(not)e(get)h(into)g(more)h(details.)20b(The)13 b(point)f(is)h(that)g(the)g(generic)g(formalisms)h(of)f(LMIs)h(on)f(which)f(are)j(based)-98 1049 y(SDP)f(solv)o(ers)e(are)i(much)f(too)f(compact)i(to)e(be)h(adapted)g(easily)f(to)h(application)e(problems.)19 b(In)13 b(particular)n(,)h(a)f(major)-981106 y(dif)o(\002culty)g(is)h(that)g(control)f(problems)h(are)g(formulated)g(with)g(matrix)g(v)o(ariables)f(while)h(the)g(generic)g(formulations)-98 1162 y(e)o(xposed)f(abo)o(v)o(e)i(depend)e(on)g(v)o(ectors)h(of)f(decision)g(v)o(ariables.)21 b(Going)12b(from)i(one)g(formalism)g(to)f(another)g(may)h(be)-981218 y(quite)d(tedious.)-98 1310 y(T)l(ake)g(for)h(e)o(xample)g(the)e(L)n(yapuno)o(v)g(inequality)m(,)g(it)g(writes)h(as)g(an)g(LMI)h(constraint:)715 1416 y Fw(A)743 1397 y Ft(T)767 1416y FB(P)6 b Fq(+)g FB(P)p Fw(A)11 b Fv(<)f Fm(0)-98 1521y FA(Assume)j Fw(A)h FA(is)f(a)h(2-by-2)e(matrix.)21b FB(P)14 b FA(is)f(a)g(symmetric)h(matrix)f(considered)g(as)g(the)g(v)o(ariable)g(in)g(the)g(LMI)h(problem.)-98 1577 y(Expressed)d(in)f(terms)i(of)f(the)g(scalar)g(data)g(and)g(the)g(scalar)g(v)o(ariables)g(\(bold)f(face\))i(the)f(LMI)g(writes)g(as:)312 1644y Fk(\024)357 1680 y Fw(a)380 1687 y FI(11)456 1680 yFw(a)479 1687 y FI(21)357 1736 y Fw(a)380 1743 y FI(12)4561736 y Fw(a)479 1743 y FI(22)535 1644 y Fk(\025)5 b(\024)6091680 y FB(p)634 1687 y Fi(1)694 1680 y FB(p)719 1687y Fi(2)609 1736 y FB(p)634 1743 y Fi(2)694 1736 y FB(p)7191743 y Fi(3)759 1644 y Fk(\025)789 1708 y Fq(+)830 1644y Fk(\024)876 1680 y FB(p)901 1687 y Fi(1)961 1680 yFB(p)986 1687 y Fi(2)876 1736 y FB(p)901 1743 y Fi(2)9611736 y FB(p)986 1743 y Fi(3)1026 1644 y Fk(\025)g(\024)10991680 y Fw(a)1122 1687 y FI(11)1199 1680 y Fw(a)1222 1687y FI(12)1099 1736 y Fw(a)1122 1743 y FI(21)1199 1736y Fw(a)1222 1743 y FI(22)1278 1644 y Fk(\025)1312 1708y Fv(<)10 b Fm(0)-98 1837 y FA(and)h(this)f(corresponds)g(in)h(the)g(formalism)g(\(1\))h(to:)212 1940 y Fw(F)235 1947 y FI(0)2641940 y Fq(=)e Fm(0)361 b FB(x)718 1923 y Ft(T)752 1940y Fq(=)11 b(\()p FB(p)841 1947 y Fi(1)859 1940 y Fv(;)5b FB(p)902 1947 y Fi(2)921 1940 y Fv(;)g FB(p)964 1947y Fi(3)982 1940 y Fq(\))55 2072 y Fw(F)78 2079 y FI(1)1072072 y Fq(=)152 2008 y Fk(\024)197 2043 y Fp(\000)p FA(2)pFw(a)278 2050 y FI(11)354 2043 y Fp(\000)p Fw(a)412 2050y FI(12)208 2100 y Fp(\000)p Fw(a)266 2107 y FI(12)3902100 y FA(0)468 2008 y Fk(\025)534 2072 y Fw(F)557 2079y FI(2)586 2072 y Fq(=)631 2008 y Fk(\024)718 2043 yFp(\000)p FA(2)p Fw(a)799 2050 y FI(21)917 2043 y Fp(\000)pFw(a)975 2050 y FI(11)1016 2043 y Fp(\000)h Fw(a)10802050 y FI(22)676 2100 y Fp(\000)p Fw(a)734 2107 y FI(11)7762100 y Fp(\000)g Fw(a)840 2107 y FI(22)958 2100 y Fp(\000)pFA(2)p Fw(a)1039 2107 y FI(12)1137 2008 y Fk(\025)12022072 y Fw(F)1225 2079 y FI(3)1254 2072 y Fq(=)1300 2008y Fk(\024)1380 2043 y FA(0)88 b Fp(\000)p Fw(a)1549 2050y FI(21)1344 2100 y Fp(\000)p Fw(a)1402 2107 y FI(21)14792100 y Fp(\000)p FA(2)p Fw(a)1560 2107 y FI(22)1616 2008y Fk(\025)-98 2201 y FA(The)10 b(manipulations)d(are)j(tri)o(vial)e(b)o(ut)h(tedious)f(e)o(v)o(en)i(for)g(small)f(size)g(problems.)14b(S)r Fz(E)r FA(D)r Fz(U)r FA(M)r Fz(I)h FA(I)r Fz(N)r(T)r(E)r(R)r(F)o(A)q(C)r(E)f FA(is)c(designed)-98 2257 y(to)k(tackle)g(these)g(manipulations.)20 b(In)15 b(particular)n(,)f(the)g(syntax)f(adopted)g(in)i(S)r Fz(E)r FA(D)r Fz(U)r FA(M)r Fz(I)k FA(I)r Fz(N)r(T)r(E)r(R)r(F)o(A)r(C)r(E)f FA(is)c(adapted)g(to)-98 2314 y(usual)d(control)f(LMI)i(formulations.)i(A)d(lar)o(ge)h(spectrum)f(of)h(options)d(allo)o(ws)h(to)h(simplify)g(some)g(recurrent)h(declara-)-98 2370y(tions:)-29 2503 y Fp(\017)22 b FA(First,)14 b(a)g(lar)o(ge)g(v)o(ariety)f(of)h(matrix)g(v)o(ariables)f(are)h(admissible)e(in)j(S)rFz(E)r FA(D)r Fz(U)r FA(M)r Fz(I)j FA(I)r Fz(N)r(T)r(E)r(R)r(F)o(A)r(C)r(E)q FA(.)25 b(It)14 b(ranges)g(from)16 2559 y(full)j(block)f(matrices)i(to)f(an)o(y)g(structured)g(matrix)g(v)o(ariable)g(including)e(the)i(symmetric,)j(anti-symmetric,)16 2616y(Hermitian)11 b(and)g(anti-Hermitian)f(v)o(ariables.)-292714 y Fp(\017)22 b FA(Second,)15 b(both)d(linear)i(matrix)f(inequality)f(\(LMI\))i(and)g(equality)e(\(LME\))i(constraints)e(can)i(be)f(declared.)22 b(In)16 2770 y(the)12 b(sequel,)f(an)h(LMC)h(problem)e(is)h(an)g(optimisation)d(problem)j(with)e(a)j(linear)e(objecti)o(v)o(e)g(and)h(possibly)d(both)16 2827 y(LMI)j(and)f(LME)g(constraints.)836 2951 y(3)p eop%%Page: 4 54 4 bop 170 -80 a Fp(\017)22 b FA(Third,)11 b(v)o(arious)e(types)h(of)h(linear)g(matrix)f(terms)h(can)g(be)g(declared)g(including)e(Kronecker)h(products)g(between)215 -24 y(data)h(matrices)h(and)f(matrix)g(v)o(ariables.)170 69 y Fp(\017)22 b FA(F)o(ourth,)12 b(the)e(linear)h(objecti)o(v)o(e)f(is)h(a)h(sum)f(of)g(linear)g(terms)g(and)g(can)h(contain)e(the)h(trace)g(operator)n(.)170 162 y Fp(\017)22b FA(Fifth,)17 b(data)e(matrices)h(and)g(v)o(ariables)e(can)i(be)g(real)g(or)f(comple)o(x)h(v)o(alued.)27 b(LMIs)16 b(are)g(then)f(interpreted)g(as)215 218 y(Hermitian)c(positi)o(v)o(e)e(de\002nite)i(constraints.)170 311 y Fp(\017)22 b FA(Sixth,)11 b(the)g(LMCs)g(can)h

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -