📄 qam16_secant.m
字号:
% qam16_secant.m
%
% Simulation 16QAM system with secant adaptive algorithm
%
% Programmed by linxiaochen
%******************** Preparatin part *******************************
sr = 256000.0; % Symbol rate
m1 = 4; % m1:Number of modulation levels
% (BPSK:m1=1, QPSK:m1=2, 16QAM:m1=4)
br = sr .* m1; % Bit rate
nd = 2^10; % Number of symbols htat simulates in
% each loop
IPOINT = 8; % Number of oversamples
SNR_dB = 1:15; % 仿真信噪比范围
SNR1_dB = 0:0.1:15;
Ar = 2.0; % TWTA的Dong-Seog Han参数
Br = 1;
Ap = pi/3;
Bp = 1;
%******************** Filter initialization *************************
irfn = 21; % Number of taps
alfs = 0.5; % Rolloff factor
[xh] = hrollfcoef(irfn,IPOINT,sr,alfs,1);
% Transmitter filter coefficients
[xh2] = hrollfcoef(irfn,IPOINT,sr,alfs,0);
% Receiver filter coefficients
%******************** Data generation *******************************
data1 = rand(1,nd*m1) > 0.5; % rand:built in function
%******************** 16QAM Modulation ******************************
[ich,qch] = qammod(data1,1,nd,m1);
figure(1);
plot(ich,qch,'*');
[ich1,qch1] = compoversamp(ich,qch,length(ich),IPOINT);
[ich2,qch2] = compconv(ich1,qch1,xh);
Ht_out = ich2 +i * qch2;
%***************************************************************
%
% 预失真之前的归一化和功率回退
%
%***************************************************************
IBO_dB = 4.5; % 功率回退系数
nf_ibo = 10^(-IBO_dB/10); % 功率回退复系数
nf = sqrt(0.5*mean(abs(Ht_out).^2)); % 归一化系数
PD_in = nf_ibo*Ht_out/nf; % 归一化和功率回退
PD_in_Env = abs(PD_in);
PD_in_Phase = angle(PD_in);
%******************************************************************
%
% 增益预失真 ( Gain Based Predistortion )
%
%******************************************************************
delta = 1/2^6;
F = zeros(1,1/delta); % 将信号对应到相应的表格
%******************************************************************
%
% 自适应 ( secant method )
%
%******************************************************************
tic;
for n = 1:length(PD_in)
aa = n
num(n) = fix(PD_in_Env(n)/delta) + 1;
F0 = 0;
F1 = 1;
while abs(F1-F0) > 0.1
PD0(n) = PD_in(n) * F0;
PD1(n) = PD_in(n) * F1;
PA0a(n) = Ar*abs(PD0(n))/(1+Br*abs(PD0(n))^2); % 幅度非线性放大
PA0p(n) = Ap*abs(PD0(n))^2/(1+Bp*abs(PD0(n))^2) + angle(PD0(n)); % 相位非线性放大
PA0(n) = PA0a(n)*exp(i*PA0p(n))/nf_ibo*nf; % 去归一化和去功率回退
PA1a(n) = Ar*abs(PD1(n))/(1+Br*abs(PD1(n))^2); % 幅度非线性放大
PA1p(n) = Ap*abs(PD1(n))^2/(1+Bp*abs(PD1(n))^2) + angle(PD1(n)); % 相位非线性放大
PA1(n) = PA1a(n)*exp(i*PA1p(n))/nf_ibo*nf; % 去归一化和去功率回退
e0 = PA0(n) - Ht_out(n);
e1 = PA1(n) - Ht_out(n);
if (e1-e0) == 0
fenmu = 0.1;
else
fenmu = e1 - e0;
end
F2 = (F0*e1 - F1*e0)/fenmu;
F0 = F1;
F1 = F2;
end % while
FF(n) = F2;
end;
toc;
PA_out_i = real(PA1);
PA_out_q = imag(PA1);
for ebn0 = 1:length(SNR_dB)+1
%******************** START CALCULATION *****************************
nloop = 10; % Number of simulation loops
noe = 0; % Number of error data
nod = 0; % Number of transmitted data
for iii = 1:nloop
%******************** Attenuation Calculation ***********************
spow = sum(PA_out_i.*PA_out_i+PA_out_q.*PA_out_q)/nd;
% sum:built in function
attn = 0.5*spow*sr/br*10.^(-(ebn0-1)/10);
attn = sqrt(attn);
% sqrt:built in function
%************** Add White Gaussian Noise (AWGN) *********************
[ich3,qch3] = comb(PA_out_i,PA_out_q,attn);
% add white gaussian noise
[ich4,qch4] = compconv(ich3,qch3,xh2);
sampl = irfn*IPOINT+1;
ich5 = ich4(sampl:IPOINT:length(ich4));
qch5 = qch4(sampl:IPOINT:length(qch4));
ich6 = ich5(1:1000);
qch6 = qch5(1:1000);
figure(2);
plot(ich6,qch6,'*');
%******************** 16QAM Demodulation ****************************
[demodata] = qamdemod(ich5,qch5,1,nd,m1);
%******************** Bit Error Rate (BER) **************************
noe2 = sum(abs(data1-demodata));
nod2 = length(data1);
noe = noe + noe2;
nod = nod + nod2;
% fprintf:built in function
end % for iii = 1:nloop
%******************** Output result *********************************
ber(ebn0) = noe/nod;
end
t1 = [0:0.1:12];
tt1=exp(t1*log(10)/10);
B1 = 3/8.*erfc(sqrt(2/5.*tt1))-9/64.*erfc(sqrt(2/5.*tt1)).*erfc(sqrt(2/5.*tt1));
t11=[0:length(ber)-1];
figure(3);
semilogy(t1,B1,t11,ber,'v-');
[pxx1,f1] = pwelch(Ht_out,512);
pxxdB1 = 10 * log10(pxx1 / max(pxx1));
[pxx2,f2] = pwelch(PA1,512);
pxxdB2 = 10 * log10(pxx2 / max(pxx2));
figure(4); % OFDM调制、解调信号功率谱密度
plot(f2,pxxdB2,'y');
eyediagram((ich+qch*i),2);
eyediagram((ich5(1:500)+qch5(1:500)*i),2)
%******************** end of file ***********************************
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -