📄 fat16.c
字号:
return 0; uint32_t fat_offset = fs->header.fat_offset; uint8_t buffer[2]; while(cluster_num) { if(!fs->partition->device_read(fat_offset + 2 * cluster_num, buffer, 2)) return 0; /* get next cluster of current cluster before freeing current cluster */ uint16_t cluster_num_next = ((uint16_t) buffer[0]) | ((uint16_t) buffer[1] << 8); if(cluster_num_next == FAT16_CLUSTER_FREE) return 1; if(cluster_num_next == FAT16_CLUSTER_BAD || (cluster_num_next >= FAT16_CLUSTER_RESERVED_MIN && cluster_num_next <= FAT16_CLUSTER_RESERVED_MAX ) ) return 0; if(cluster_num_next >= FAT16_CLUSTER_LAST_MIN && cluster_num_next <= FAT16_CLUSTER_LAST_MAX) cluster_num_next = 0; /* free cluster */ buffer[0] = FAT16_CLUSTER_FREE & 0xff; buffer[1] = (FAT16_CLUSTER_FREE >> 8) & 0xff; fs->partition->device_write(fat_offset + 2 * cluster_num, buffer, 2); /* We continue in any case here, even if freeing the cluster failed. * The cluster is lost, but maybe we can still free up some later ones. */ cluster_num = cluster_num_next; } return 1;#else return 0;#endif}/** * \ingroup fat16_fs * Frees a part of a cluster chain and correctly terminates the rest. * * Marks the specified cluster as the new end of a cluster chain and * frees all following clusters. * * \param[in] fs The filesystem on which to operate. * \param[in] cluster_num The new end of the cluster chain. * \returns 0 on failure, 1 on success. * \see fat16_free_clusters */uint8_t fat16_terminate_clusters(const struct fat16_fs_struct* fs, uint16_t cluster_num){#if FAT16_WRITE_SUPPORT if(!fs || cluster_num < 2) return 0; /* fetch next cluster before overwriting the cluster entry */ uint16_t cluster_num_next = fat16_get_next_cluster(fs, cluster_num); /* mark cluster as the last one */ uint8_t buffer[2]; buffer[0] = FAT16_CLUSTER_LAST_MAX & 0xff; buffer[1] = (FAT16_CLUSTER_LAST_MAX >> 8) & 0xff; if(!fs->partition->device_write(fs->header.fat_offset + 2 * cluster_num, buffer, 2)) return 0; /* free remaining clusters */ if(cluster_num_next) return fat16_free_clusters(fs, cluster_num_next); else return 1;#else return 0;#endif}/** * \ingroup fat16_fs * Clears a single cluster. * * The complete cluster is filled with zeros. * * \param[in] fs The filesystem on which to operate. * \param[in] cluster_num The cluster to clear. * \returns 0 on failure, 1 on success. */uint8_t fat16_clear_cluster(const struct fat16_fs_struct* fs, uint16_t cluster_num){#if FAT16_WRITE_SUPPORT if(cluster_num < 2) return 0; uint32_t cluster_offset = fs->header.cluster_zero_offset + (uint32_t) (cluster_num - 2) * fs->header.cluster_size; uint8_t zero[16]; return fs->partition->device_write_interval(cluster_offset, zero, fs->header.cluster_size, fat16_clear_cluster_callback, 0 );#else return 0;#endif}/** * \ingroup fat16_fs * Callback function for clearing a cluster. */uint16_t fat16_clear_cluster_callback(uint8_t* buffer, uint32_t offset, void* p){#if FAT16_WRITE_SUPPORT memset(buffer, 0, 16); return 16;#else return 0;#endif}/** * \ingroup fat16_file * Opens a file on a FAT16 filesystem. * * \param[in] fs The filesystem on which the file to open lies. * \param[in] dir_entry The directory entry of the file to open. * \returns The file handle, or 0 on failure. * \see fat16_close_file */struct fat16_file_struct* fat16_open_file(struct fat16_fs_struct* fs, const struct fat16_dir_entry_struct* dir_entry){ if(!fs || !dir_entry || (dir_entry->attributes & FAT16_ATTRIB_DIR)) return 0;#if USE_DYNAMIC_MEMORY struct fat16_file_struct* fd = malloc(sizeof(*fd)); if(!fd) return 0;#else struct fat16_file_struct* fd = fat16_file_handlers; uint8_t i; for(i = 0; i < FAT16_FILE_COUNT; ++i) { if(!fd->fs) break; ++fd; } if(i >= FAT16_FILE_COUNT) return 0;#endif memcpy(&fd->dir_entry, dir_entry, sizeof(*dir_entry)); fd->fs = fs; fd->pos = 0; fd->pos_cluster = dir_entry->cluster; return fd;}/** * \ingroup fat16_file * Closes a file. * * \param[in] fd The file handle of the file to close. * \see fat16_open_file */void fat16_close_file(struct fat16_file_struct* fd){ if(fd)#if USE_DYNAMIC_MEMORY free(fd);#else fd->fs = 0;#endif}/** * \ingroup fat16_file * Reads data from a file. * * The data requested is read from the current file location. * * \param[in] fd The file handle of the file from which to read. * \param[out] buffer The buffer into which to write. * \param[in] buffer_len The amount of data to read. * \returns The number of bytes read, 0 on end of file, or -1 on failure. * \see fat16_write_file */int16_t fat16_read_file(struct fat16_file_struct* fd, uint8_t* buffer, uint16_t buffer_len){ /* check arguments */ if(!fd || !buffer || buffer_len < 1) return -1; /* determine number of bytes to read */ if(fd->pos + buffer_len > fd->dir_entry.file_size) buffer_len = fd->dir_entry.file_size - fd->pos; if(buffer_len == 0) return 0; uint16_t cluster_size = fd->fs->header.cluster_size; uint16_t cluster_num = fd->pos_cluster; uint16_t buffer_left = buffer_len; uint16_t first_cluster_offset = fd->pos % cluster_size; /* find cluster in which to start reading */ if(!cluster_num) { cluster_num = fd->dir_entry.cluster; if(!cluster_num) { if(!fd->pos) return 0; else return -1; } if(fd->pos) { uint32_t pos = fd->pos; while(pos >= cluster_size) { pos -= cluster_size; cluster_num = fat16_get_next_cluster(fd->fs, cluster_num); if(!cluster_num) return -1; } } } /* read data */ do { /* calculate data size to copy from cluster */ uint32_t cluster_offset = fd->fs->header.cluster_zero_offset + (uint32_t) (cluster_num - 2) * cluster_size + first_cluster_offset; uint16_t copy_length = cluster_size - first_cluster_offset; if(copy_length > buffer_left) copy_length = buffer_left; /* read data */ if(!fd->fs->partition->device_read(cluster_offset, buffer, copy_length)) return buffer_len - buffer_left; /* calculate new file position */ buffer += copy_length; buffer_left -= copy_length; fd->pos += copy_length; if(first_cluster_offset + copy_length >= cluster_size) { /* we are on a cluster boundary, so get the next cluster */ if((cluster_num = fat16_get_next_cluster(fd->fs, cluster_num))) { first_cluster_offset = 0; } else { fd->pos_cluster = 0; return buffer_len - buffer_left; } } fd->pos_cluster = cluster_num; } while(buffer_left > 0); /* check if we are done */ return buffer_len;}/** * \ingroup fat16_file * Writes data to a file. * * The data is written to the current file location. * * \param[in] fd The file handle of the file to which to write. * \param[in] buffer The buffer from which to read the data to be written. * \param[in] buffer_len The amount of data to write. * \returns The number of bytes written, 0 on disk full, or -1 on failure. * \see fat16_read_file */int16_t fat16_write_file(struct fat16_file_struct* fd, const uint8_t* buffer, uint16_t buffer_len){#if FAT16_WRITE_SUPPORT /* check arguments */ if(!fd || !buffer || buffer_len < 1) return -1; if(fd->pos > fd->dir_entry.file_size) return -1; uint16_t cluster_size = fd->fs->header.cluster_size; uint16_t cluster_num = fd->pos_cluster; uint16_t buffer_left = buffer_len; uint16_t first_cluster_offset = fd->pos % cluster_size; /* find cluster in which to start writing */ if(!cluster_num) { cluster_num = fd->dir_entry.cluster; if(!cluster_num) { if(!fd->pos) { /* empty file */ fd->dir_entry.cluster = cluster_num = fat16_append_clusters(fd->fs, 0, 1); if(!cluster_num) return -1; } else { return -1; } } if(fd->pos) { uint32_t pos = fd->pos; uint16_t cluster_num_next; while(pos >= cluster_size) { pos -= cluster_size; cluster_num_next = fat16_get_next_cluster(fd->fs, cluster_num); if(!cluster_num_next && pos == 0) /* the file exactly ends on a cluster boundary, and we append to it */ cluster_num_next = fat16_append_clusters(fd->fs, cluster_num, 1); if(!cluster_num_next) return -1; cluster_num = cluster_num_next; } } } /* write data */ do { /* calculate data size to write to cluster */ uint32_t cluster_offset = fd->fs->header.cluster_zero_offset + (uint32_t) (cluster_num - 2) * cluster_size + first_cluster_offset; uint16_t write_length = cluster_size - first_cluster_offset; if(write_length > buffer_left) write_length = buffer_left; /* write data which fits into the current cluster */ if(!fd->fs->partition->device_write(cluster_offset, buffer, write_length)) break; /* calculate new file position */ buffer += write_length; buffer_left -= write_length; fd->pos += write_length; if(first_cluster_offset + write_length >= cluster_size) { /* we are on a cluster boundary, so get the next cluster */ uint16_t cluster_num_next = fat16_get_next_cluster(fd->fs, cluster_num); if(!cluster_num_next && buffer_left > 0) /* we reached the last cluster, append a new one */ cluster_num_next = fat16_append_clusters(fd->fs, cluster_num, 1); if(!cluster_num_next) { fd->pos_cluster = 0; break; } cluster_num = cluster_num_next; first_cluster_offset = 0; } fd->pos_cluster = cluster_num; } while(buffer_left > 0); /* check if we are done */ /* update directory entry */ if(fd->pos > fd->dir_entry.file_size) { uint32_t size_old = fd->dir_entry.file_size; /* update file size */ fd->dir_entry.file_size = fd->pos; /* write directory entry */ if(!fat16_write_dir_entry(fd->fs, &fd->dir_entry)) { /* We do not return an error here since we actually wrote * some data to disk. So we calculate the amount of data * we wrote to disk and which lies within the old file size. */ buffer_left = fd->pos - size_old; fd->pos = size_old; } } return buffer_len - buffer_left;#else return -1;#endif}/** * \ingroup fat16_file * Repositions the read/write file offset. * * Changes the file offset where the next call to fat16_read_file() * or fat16_write_file() starts reading/writing. * * If the new offset is beyond the end of the file, fat16_resize_file() * is implicitly called, i.e. the file is expanded. * * The new offset can be given in different ways determined by * the \c whence parameter: * - \b FAT16_SEEK_SET: \c *offset is relative to the beginning of the file. * - \b FAT16_SEEK_CUR: \c *offset is relative to the current file position. * - \b FAT16_SEEK_END: \c *offset is relative to the end of the file. * * The resulting absolute offset is written to the location the \c offset * parameter points to. * * \param[in] fd The file decriptor of the file on which to seek. * \param[in,out] offset A pointer to the new offset, as affected by the \c whence * parameter. The function writes the new absolute offset * to this location before it returns.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -