📄 block.c
字号:
#else
levelscale = LevelScale4x4Luma[1][qp_rem];
leveloffset = LevelOffset4x4Luma[1][qp_per];
invlevelscale = InvLevelScale4x4Luma[1][qp_rem];
#endif
for (j=0;j<16;j++)
{
jdiv = j >> 2;
jmod = j & 0x03;
jj = img->opix_y+j;
for (i=0;i<16;i++)
{
// Residue Color Transform
if(!img->residue_transform_flag)
M1[j][i]=imgY_org[jj][img->opix_x+i]-img->mprr_2[new_intra_mode][j][i];
else
M1[j][i]=img->m7[j][i];
M0[jdiv][i >> 2][jmod][i & 0x03]=M1[j][i];
}
}
for (jj=0;jj<4 && !lossless_qpprime;jj++)
{
for (ii=0;ii<4;ii++)
{
for (j=0;j<4;j++)
{
M5[0] = M0[jj][ii][j][0] + M0[jj][ii][j][3];
M5[1] = M0[jj][ii][j][1] + M0[jj][ii][j][2];
M5[2] = M0[jj][ii][j][1] - M0[jj][ii][j][2];
M5[3] = M0[jj][ii][j][0] - M0[jj][ii][j][3];
M4[j][0] = M5[0] + M5[1];
M4[j][2] = M5[0] - M5[1];
M4[j][1] = M5[3]*2 + M5[2];
M4[j][3] = M5[3] - M5[2]*2;
}
// vertical
for (i=0;i<4;i++)
{
M5[0] = M4[0][i] + M4[3][i];
M5[1] = M4[1][i] + M4[2][i];
M5[2] = M4[1][i] - M4[2][i];
M5[3] = M4[0][i] - M4[3][i];
M0[jj][ii][0][i] = M5[0] + M5[1];
M0[jj][ii][2][i] = M5[0] - M5[1];
M0[jj][ii][1][i] = M5[3]*2 + M5[2];
M0[jj][ii][3][i] = M5[3] - M5[2]*2;
}
}
}
// pick out DC coeff
for (j=0;j<4;j++)
{
for (i=0;i<4;i++)
M4[j][i]= M0[j][i][0][0];
}
if (!lossless_qpprime)
{
for (j=0;j<4;j++)
{
M5[0] = M4[j][0]+M4[j][3];
M5[1] = M4[j][1]+M4[j][2];
M5[2] = M4[j][1]-M4[j][2];
M5[3] = M4[j][0]-M4[j][3];
M4[j][0] = M5[0]+M5[1];
M4[j][2] = M5[0]-M5[1];
M4[j][1] = M5[3]+M5[2];
M4[j][3] = M5[3]-M5[2];
}
// vertical
for (i=0;i<4;i++)
{
M5[0] = M4[0][i]+M4[3][i];
M5[1] = M4[1][i]+M4[2][i];
M5[2] = M4[1][i]-M4[2][i];
M5[3] = M4[0][i]-M4[3][i];
M4[0][i]=(M5[0]+M5[1])>>1;
M4[2][i]=(M5[0]-M5[1])>>1;
M4[1][i]=(M5[3]+M5[2])>>1;
M4[3][i]=(M5[3]-M5[2])>>1;
}
}
// quant
run=-1;
scan_pos=0;
for (coeff_ctr=0;coeff_ctr<16;coeff_ctr++)
{
i=pos_scan[coeff_ctr][0];
j=pos_scan[coeff_ctr][1];
run++;
if(lossless_qpprime)
level= absm(M4[j][i]);
else
level= (absm(M4[j][i]) * levelscale[0][0] + (leveloffset[0][0]<<1)) >> (q_bits+1);
if (input->symbol_mode == UVLC && img->qp < 10)
{
if (level > CAVLC_LEVEL_LIMIT)
level = CAVLC_LEVEL_LIMIT;
}
if (level != 0)
{
DCLevel[scan_pos] = sign(level,M4[j][i]);
DCRun [scan_pos] = run;
++scan_pos;
run=-1;
}
if(!lossless_qpprime)
M4[j][i]=sign(level,M4[j][i]);
}
DCLevel[scan_pos]=0;
// invers DC transform
for (j=0;j<4 && !lossless_qpprime;j++)
{
M6[0]=M4[j][0]+M4[j][2];
M6[1]=M4[j][0]-M4[j][2];
M6[2]=M4[j][1]-M4[j][3];
M6[3]=M4[j][1]+M4[j][3];
M4[j][0] = M6[0]+M6[3];
M4[j][1] = M6[1]+M6[2];
M4[j][2] = M6[1]-M6[2];
M4[j][3] = M6[0]-M6[3];
}
for (i=0;i<4 && !lossless_qpprime;i++)
{
M6[0]=M4[0][i]+M4[2][i];
M6[1]=M4[0][i]-M4[2][i];
M6[2]=M4[1][i]-M4[3][i];
M6[3]=M4[1][i]+M4[3][i];
if(qp_per<6)
{
M0[0][i][0][0] = ((M6[0]+M6[3])*invlevelscale[0][0]+(1<<(5-qp_per)))>>(6-qp_per);
M0[1][i][0][0] = ((M6[1]+M6[2])*invlevelscale[0][0]+(1<<(5-qp_per)))>>(6-qp_per);
M0[2][i][0][0] = ((M6[1]-M6[2])*invlevelscale[0][0]+(1<<(5-qp_per)))>>(6-qp_per);
M0[3][i][0][0] = ((M6[0]-M6[3])*invlevelscale[0][0]+(1<<(5-qp_per)))>>(6-qp_per);
}
else
{
M0[0][i][0][0] = ((M6[0]+M6[3])*invlevelscale[0][0])<<(qp_per-6);
M0[1][i][0][0] = ((M6[1]+M6[2])*invlevelscale[0][0])<<(qp_per-6);
M0[2][i][0][0] = ((M6[1]-M6[2])*invlevelscale[0][0])<<(qp_per-6);
M0[3][i][0][0] = ((M6[0]-M6[3])*invlevelscale[0][0])<<(qp_per-6);
}
}
// AC inverse trans/quant for MB
for (jj=0;jj<4;jj++)
{
for (ii=0;ii<4;ii++)
{
for (j=0;j<4;j++)
{
memcpy(M4[j],M0[jj][ii][j], BLOCK_SIZE * sizeof(int));
}
run = -1;
scan_pos = 0;
b8 = 2*(jj >> 1) + (ii >> 1);
b4 = 2*(jj & 0x01) + (ii & 0x01);
ACLevel = img->cofAC [b8][b4][0];
ACRun = img->cofAC [b8][b4][1];
#ifdef RDO_Q
//#ifdef TREL_CAVLC
if(input->UseRDO_Q && active_pps->entropy_coding_mode_flag == UVLC)
TrellisCAVLC4x4(M4, q_bits, qp_rem, levelscale, leveloffset, levelTrellis, LUMA_INTRA16x16AC, b8, b4, 15, lambda_md);
//#endif
if(input->UseRDO_Q && active_pps->entropy_coding_mode_flag == CABAC)
{
kStart=0; kStop=0; noCoeff=0;
for (coeff_ctr=0;coeff_ctr < 15;coeff_ctr++)
{
i=pos_scan[coeff_ctr+1][0]; // scan is shifted due to DC
j=pos_scan[coeff_ctr+1][1]; // scan is shifted due to DC
levelData[coeff_ctr].levelDouble=absm(M4[j][i]*levelscale[i][j]);
level = (int)(levelData[coeff_ctr].levelDouble >> q_bits);
lowerInt=(((int)levelData[coeff_ctr].levelDouble-(level<<q_bits))<(1<<(q_bits-1)))? 1 : 0;
levelData[coeff_ctr].level[0]=0;
if (level==0 && lowerInt==1)
{
levelData[coeff_ctr].noLevels=1;
}
else if (level==0 && lowerInt==0)
{
levelData[coeff_ctr].level[1] = level+1;
levelData[coeff_ctr].noLevels=2;
kStop=coeff_ctr;
noCoeff++;
}
else if (level>0 && lowerInt==1)
{
levelData[coeff_ctr].level[1] = level;
levelData[coeff_ctr].noLevels=2;
kStop=coeff_ctr;
noCoeff++;
}
else
{
levelData[coeff_ctr].level[1] = level;
levelData[coeff_ctr].level[2] = level+1;
levelData[coeff_ctr].noLevels=3;
kStop=coeff_ctr;
kStart=coeff_ctr;
noCoeff++;
}
for (k=0; k<levelData[coeff_ctr].noLevels; k++)
{
err=(double)(levelData[coeff_ctr].level[k]<<q_bits)-(double)levelData[coeff_ctr].levelDouble;
levelData[coeff_ctr].errLevel[k]=(err*err*(double)estErr4x4[qp_rem][i][j])/normFact;
}
}
estBits=est_write_and_store_CBP_block_bit(currMB, LUMA_16AC);
est_writeRunLevel_CABAC(levelData, levelTrellis, LUMA_16AC, lambda_md, kStart, kStop, noCoeff, estBits);
}
#endif
for (coeff_ctr=1;coeff_ctr<16;coeff_ctr++) // set in AC coeff
{
i=pos_scan[coeff_ctr][0];
j=pos_scan[coeff_ctr][1];
run++;
#ifdef RDO_Q
if(input->UseRDO_Q)
{
level=levelTrellis[coeff_ctr-1];
}
else
{
if(lossless_qpprime)
level= absm( M4[j][i]);
else
level= ( absm( M4[j][i]) * levelscale[i][j] + leveloffset[i][j]) >> q_bits;
}
#else
if(lossless_qpprime)
level= absm( M4[j][i]);
else
level= ( absm( M4[j][i]) * levelscale[i][j] + leveloffset[i][j]) >> q_bits;
#endif
if (img->AdaptiveRounding)
{
if (lossless_qpprime || level == 0 )
{
img->fadjust4x4[2][jj*BLOCK_SIZE+j][ii*BLOCK_SIZE+i] = 0;
}
else
{
img->fadjust4x4[2][jj*BLOCK_SIZE+j][ii*BLOCK_SIZE+i] =
(AdaptRndWeight * (absm(M4[j][i]) * levelscale[i][j] - (level << q_bits)) + (1<< (q_bits))) >> (q_bits + 1);
}
}
if (level != 0)
{
ac_coef = 15;
ACLevel[scan_pos] = sign(level,M4[j][i]);
ACRun [scan_pos] = run;
++scan_pos;
run=-1;
}
if(!lossless_qpprime)
{
level=sign(level, M4[j][i]);
if(qp_per<4)
M4[j][i]=(level*invlevelscale[i][j]+(1<<(3-qp_per)))>>(4-qp_per);
else
M4[j][i]=(level*invlevelscale[i][j])<<(qp_per-4);
}
}
ACLevel[scan_pos] = 0;
// IDCT horizontal
for (j=0;j<4 && !lossless_qpprime;j++)
{
M6[0] = M4[j][0] + M4[j][2];
M6[1] = M4[j][0] - M4[j][2];
M6[2] =(M4[j][1]>>1) - M4[j][3];
M6[3] = M4[j][1] + (M4[j][3]>>1);
M4[j][0] = M6[0] + M6[3];
M4[j][1] = M6[1] + M6[2];
M4[j][2] = M6[1] - M6[2];
M4[j][3] = M6[0] - M6[3];
}
// vert
for (i=0;i<4 && !lossless_qpprime;i++)
{
M6[0]= M4[0][i] + M4[2][i];
M6[1]= M4[0][i] - M4[2][i];
M6[2]=(M4[1][i]>>1) - M4[3][i];
M6[3]= M4[1][i] + (M4[3][i]>>1);
M0[jj][ii][0][i] = M6[0] + M6[3];
M0[jj][ii][1][i] = M6[1] + M6[2];
M0[jj][ii][2][i] = M6[1] - M6[2];
M0[jj][ii][3][i] = M6[0] - M6[3];
}
}
}
// Residue Color Transform
if(!img->residue_transform_flag)
{
for (jj=0;jj<BLOCK_MULTIPLE; jj++)
for (ii=0;ii<BLOCK_MULTIPLE; ii++)
for (j=0;j<BLOCK_SIZE;j++)
{
memcpy(&M1[jj*BLOCK_SIZE + j][ii*BLOCK_SIZE], M0[jj][ii][j], BLOCK_SIZE * sizeof(int));
}
}
else
{
if(lossless_qpprime)
{
for (j=0;j<MB_BLOCK_SIZE;j++)
{
jdiv = j >> 2;
jmod = j & 0x03;
for (i=0;i<MB_BLOCK_SIZE;i++)
img->m7[j][i]=M0[jdiv][i >> 2][jmod][i & 0x03];
}
}
else
{
for (j=0;j<MB_BLOCK_SIZE;j++)
{
jdiv = j >> 2;
jmod = j & 0x03;
for (i=0;i<MB_BLOCK_SIZE;i++)
img->m7[j][i]=((M0[jdiv][i >> 2][jmod][i & 0x03]+DQ_ROUND)>>DQ_BITS);
}
}
}
if(!img->residue_transform_flag)
{
if(lossless_qpprime)
{
for (j=0;j<16;j++)
{
jj = img->pix_y+j;
for (i=0;i<16;i++)
{
enc_picture->imgY[jj][img->pix_x+i]=(imgpel)(M1[j][i]+img->mprr_2[new_intra_mode][j][i]);
if(img->type==SP_SLICE)
lrec[jj][img->pix_x+i]=-16; //signals an I16 block in the SP frame
}
}
}
else
{
for (j=0;j<16;j++)
{
jj = img->pix_y+j;
for (i=0;i<16;i++)
{
enc_picture->imgY[jj][img->pix_x+i]=(imgpel)clip1a((M1[j][i]+((long)img->mprr_2[new_intra_mode][j][i]<<DQ_BITS)+DQ_ROUND)>>DQ_BITS);
if(img->type==SP_SLICE)
lrec[jj][img->pix_x+i]=-16; //signals an I16 block in the SP frame
}
}
}
}
return ac_coef;
}
/*!
************************************************************************
* \brief
* The routine performs transform,quantization,inverse transform, adds the diff.
* to the prediction and writes the result to the decoded luma frame. Includes the
* RD constrained quantization also.
*
* \par Input:
* block_x,block_y: Block position inside a macro block (0,4,8,12).
*
* \par Output_
* nonzero: 0 if no levels are nonzero. 1 if there are nonzero levels. \n
* coeff_cost: Counter for nonzero coefficients, used to discard expensive levels.
************************************************************************
*/
#ifdef USE_INTRA_MDDT
int dct_luma(int block_x,int block_y,int *coeff_cost, int intra, int ipmode)
#else
int dct_luma(int block_x,int block_y,int *coeff_cost, int intra)
#endif
{
int sign(int a,int b);
int i,j,ilev, m4[4][4], m5[4],m6[4],coeff_ctr;
int ii;
//int qp_const;
int level,scan_pos,run;
int nonzero;
int qp_per,qp_rem,q_bits;
int pos_x = block_x >> BLOCK_SHIFT;
int pos_y = block_y >> BLOCK_SHIFT;
int b8 = 2*(pos_y >> 1) + (pos_x >> 1);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -