⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 block.c

📁 JM 11.0 KTA 2.1 Source Code
💻 C
📖 第 1 页 / 共 5 页
字号:
    img->mprr[HOR_DOWN_PRED][3][0] = (P_K + P_L + 1) >> 1;
    img->mprr[HOR_DOWN_PRED][3][1] = (P_J + 2*P_K + P_L + 2) >> 2;
  }
}

/*!
 ************************************************************************
 * \brief
 *    16x16 based luma prediction
 *
 * \par Input:
 *    Image parameters
 *
 * \par Output:
 *    none
 ************************************************************************
 */
void intrapred_luma_16x16()
{
  int s0=0,s1,s2;
  imgpel s[2][16];
  int i,j;

  int ih,iv;
  int ib,ic,iaa;

  imgpel   **imgY_pred = enc_picture->imgY;  // For Mb level field/frame coding tools -- default to frame pred
  int          mb_nr = img->current_mb_nr;

  PixelPos up;          //!< pixel position p(0,-1)
  PixelPos left[17];    //!< pixel positions p(-1, -1..15)

  int up_avail, left_avail, left_up_avail;

  for (i=0;i<17;i++)
  {
    getNeighbour(mb_nr, -1,  i-1, 1, &left[i]);
  }
  
  getNeighbour(mb_nr,    0,   -1, 1, &up);

  if (!(input->UseConstrainedIntraPred))
  {
    up_avail      = up.available;
    left_avail    = left[1].available;
    left_up_avail = left[0].available;
  }
  else
  {
    up_avail      = up.available ? img->intra_block[up.mb_addr] : 0;
    for (i=1, left_avail=1; i<17;i++)
      left_avail  &= left[i].available ? img->intra_block[left[i].mb_addr]: 0;
    left_up_avail = left[0].available ? img->intra_block[left[0].mb_addr]: 0;
  }

  s1=s2=0;
  // make DC prediction
  if (up_avail)
  {
    for (i=0; i < MB_BLOCK_SIZE; i++)
      s1 += imgY_pred[up.pos_y][up.pos_x+i];    // sum hor pix
  }

  if (left_avail)
  {
    for (i=0; i < MB_BLOCK_SIZE; i++)      
      s2 += imgY_pred[left[i+1].pos_y][left[i+1].pos_x];    // sum vert pix
  }

  if (up_avail && left_avail)
    s0=(s1+s2+16)/(2*MB_BLOCK_SIZE);             // no edge
  
  if (!up_avail && left_avail)
    s0=(s2+8)/MB_BLOCK_SIZE;                     // upper edge
  
  if (up_avail && !left_avail)
    s0=(s1+8)/MB_BLOCK_SIZE;                     // left edge
  
  if (!up_avail && !left_avail)
    s0=img->dc_pred_value_luma;                       // top left corner, nothing to predict from

  // vertical prediction
  if (up_avail)
    memcpy(s[0], &imgY_pred[up.pos_y][up.pos_x], MB_BLOCK_SIZE * sizeof(imgpel));
  
  // horizontal prediction
  if (left_avail)
  {
    for (i=0; i < MB_BLOCK_SIZE; i++)
      s[1][i]=imgY_pred[left[i+1].pos_y][left[i+1].pos_x];
  }

  for (j=0; j < MB_BLOCK_SIZE; j++)
  {
    memcpy(img->mprr_2[VERT_PRED_16][j], s[0], MB_BLOCK_SIZE * sizeof(imgpel)); // store vertical prediction
    for (i=0; i < MB_BLOCK_SIZE; i++)
    {
      img->mprr_2[HOR_PRED_16 ][j][i]=s[1][j]; // store horizontal prediction
      img->mprr_2[DC_PRED_16  ][j][i]=s0;      // store DC prediction
    }
  }
  if (!up_avail || !left_avail || !left_up_avail) // edge
    return;

  // 16 bit integer plan pred

  ih=0;
  iv=0;
  for (i=1;i<9;i++)
  {
    if (i<8)
      ih += i*(imgY_pred[up.pos_y][up.pos_x+7+i] - imgY_pred[up.pos_y][up.pos_x+7-i]);
    else
      ih += i*(imgY_pred[up.pos_y][up.pos_x+7+i] - imgY_pred[left[0].pos_y][left[0].pos_x]);
    
    iv += i*(imgY_pred[left[8+i].pos_y][left[8+i].pos_x] - imgY_pred[left[8-i].pos_y][left[8-i].pos_x]);
  }
  ib=(5*ih+32)>>6;
  ic=(5*iv+32)>>6;
  
  iaa=16*(imgY_pred[up.pos_y][up.pos_x+15]+imgY_pred[left[16].pos_y][left[16].pos_x]);

  for (j=0;j< MB_BLOCK_SIZE;j++)
  {
    for (i=0;i< MB_BLOCK_SIZE;i++)
    {
      img->mprr_2[PLANE_16][j][i]=max(0,min((int)img->max_imgpel_value,(iaa+(i-7)*ib +(j-7)*ic + 16)/32));// store plane prediction
    }
  }
}

#ifdef RDO_Q //TREL_CAVLC
typedef struct TRELLISNODE
{
  int level;
  int level_idx;
  struct TRELLISNODE *prev;

} TrellisNode;

int estCAVLCbits (int m4[4][4], int level_to_enc[16], int nnz, int block_type, int b8, int b4, int param);
int predict_nnz(int i,int j);
int predict_nnz_chroma(int i,int j);


int cmp(const void *arg1, const void *arg2)
{
  return (int)(((levelDataStruct *)arg2)->levelDouble - ((levelDataStruct *)arg1)->levelDouble);
}

void TrellisCAVLC_Q(int m4[4][4], levelDataStruct *levelData, int *levelTrellis, int block_type, int b8, int b4, int coeff_num, double lambda)
{
  int k, lastnonzero, coeff_ctr, dumb=0;
  int level_to_enc[16];
  int subblock_x, subblock_y, nnz;
  int cstat, bestcstat=0; 
  int nz_coeff=0;
  double lagr, lagrAcc, minlagr=0;


  if(block_type == CHROMA_AC)
  {
     
    static unsigned char chroma_ac_param[3][8][4] =
    {
      {{ 4, 20,  5, 21},
      {36, 52, 37, 53},
      { 0,  0,  0,  0},
      { 0,  0,  0,  0},
      { 0,  0,  0,  0},
      { 0,  0,  0,  0},
      { 0,  0,  0,  0},
      { 0,  0,  0,  0}},

      {{ 4, 20,  5, 21},
      { 6, 22,  7, 23},
      {36, 52, 37, 53},
      {38, 54, 39, 55},
      { 0,  0,  0,  0},
      { 0,  0,  0,  0},
      { 0,  0,  0,  0},
      { 0,  0,  0,  0}},

      {{ 4, 20,  5, 21},
      {36, 52, 37, 53},
      { 6, 22,  7, 23},
      {38, 54, 39, 55},
      { 8, 24,  9, 25},
      {40, 56, 41, 57},
      {10, 26, 11, 27},
      {42, 58, 43, 59}}
    };

    int param = chroma_ac_param[img->yuv_format-1][b8][b4];

    // chroma AC
    subblock_x = param >> 4;
    subblock_y = param & 15;
    nnz = predict_nnz_chroma(subblock_x,subblock_y);
  }
  else
  {
    subblock_x = ((b8&0x1)==0)?(((b4&0x1)==0)?0:1):(((b4&0x1)==0)?2:3); 
    // horiz. position for coeff_count context  
    subblock_y = (b8<2)?((b4<2)?0:1):((b4<2)?2:3); 
    // vert.  position for coeff_count context      
    nnz = predict_nnz(subblock_x,subblock_y);
  }

  lastnonzero = -1;
  lagrAcc=0;
  for (coeff_ctr=0;coeff_ctr < coeff_num;coeff_ctr++)
  {	 
    levelTrellis[coeff_ctr] = 0;

    for(k=0; k<levelData[coeff_ctr].noLevels; k++)
    {
      levelData[coeff_ctr].errLevel[k] /= 32768;
    }
           
    lagrAcc += levelData[coeff_ctr].errLevel[levelData[coeff_ctr].noLevels-1];

    level_to_enc[coeff_ctr] = levelData[coeff_ctr].pre_level;

    if(levelData[coeff_ctr].noLevels > 1)
    {
      levelData[coeff_ctr].coeff_ctr = coeff_ctr;
      lastnonzero = coeff_ctr;
    }
  }


  if(lastnonzero != -1)
  {

    //sort the coefficients based on their absolute value
    qsort(levelData, lastnonzero+1, sizeof(levelDataStruct), cmp);

    for(coeff_ctr=lastnonzero; coeff_ctr>=0; coeff_ctr--) // go over all coeff
    {
      if(levelData[coeff_ctr].noLevels == 1)
        continue;
		
      lagrAcc -= levelData[coeff_ctr].errLevel[levelData[coeff_ctr].noLevels-1];
      for(cstat=0; cstat<levelData[coeff_ctr].noLevels; cstat++) // go over all states of cur coeff k
      {		
        level_to_enc[levelData[coeff_ctr].coeff_ctr] = (int) levelData[coeff_ctr].level[cstat];
        lagr = lagrAcc + levelData[coeff_ctr].errLevel[cstat];
			                         
        lagr += lambda*estCAVLCbits(m4, level_to_enc, nnz, block_type, b8, b4, dumb);
			  
        if(cstat==0 || lagr<minlagr)
        {		
          minlagr = lagr;		
          bestcstat = cstat;
        }
      }
      lagrAcc += levelData[coeff_ctr].errLevel[bestcstat];
      level_to_enc[levelData[coeff_ctr].coeff_ctr] = (int)levelData[coeff_ctr].level[bestcstat];
    }

    for(coeff_ctr=0; coeff_ctr<=lastnonzero; coeff_ctr++)
    {
      levelTrellis[coeff_ctr] = level_to_enc[coeff_ctr];
      if(level_to_enc[coeff_ctr] != 0)
        nz_coeff++;
    }
  }
  img->nz_coeff [img->current_mb_nr ][subblock_x][subblock_y] = nz_coeff;
}

void TrellisCAVLC4x4(int m4[4][4], int q_bits, int qp_rem, int **levelscale, int **leveloffset, int *levelTrellis, int block_type, int b8, int b4, int coeff_num, double lambda)
{
  levelDataStruct levelData[16];
#ifdef  INTERNAL_BIT_DEPTH_INCREASE
  double  normFact=pow(2,(2*DQ_BITS+19))*(1<<(2*img->BitDepthIncrease));
#else
  double  normFact=pow(2,(2*DQ_BITS+19));
#endif
  double err;
  int i, j, ii, coeff_ctr, lowerInt, noCoeff;
  int level;
  const byte (*pos_scan)[2] = SNGL_SCAN;

  noCoeff=0;
  for (coeff_ctr=0;coeff_ctr < coeff_num;coeff_ctr++)
  {
    if(block_type == LUMA_INTRA16x16AC || block_type == CHROMA_AC)
    {
      i=pos_scan[coeff_ctr+1][0]; // scan is shifted due to DC
      j=pos_scan[coeff_ctr+1][1]; // scan is shifted due to DC
    }
    else
    {
      i=pos_scan[coeff_ctr][0];
      j=pos_scan[coeff_ctr][1];
    }

    levelData[coeff_ctr].levelDouble=absm(m4[j][i]*levelscale[i][j]);
    level=(int)(levelData[coeff_ctr].levelDouble>>q_bits);

    lowerInt=(((int)levelData[coeff_ctr].levelDouble-(level<<q_bits))<(1<<(q_bits-1)))? 1 : 0;

    levelData[coeff_ctr].level[0]=0;
    if (level==0 && lowerInt==1)
    {
      levelData[coeff_ctr].noLevels=1;
    }
    else if (level==0 && lowerInt==0)
    {
      levelData[coeff_ctr].level[1] = level+1;
      levelData[coeff_ctr].noLevels=2;
    }
    else if (level>0 && lowerInt==1)
    {
      if(level > 1)
      {
        levelData[coeff_ctr].level[1] = level-1;
        levelData[coeff_ctr].level[2] = level;
        levelData[coeff_ctr].noLevels=3;
      }
      else
      {
        levelData[coeff_ctr].level[1] = level;
        levelData[coeff_ctr].noLevels=2;
      }
    }
    else
    {
      levelData[coeff_ctr].level[1] = level;
      levelData[coeff_ctr].level[2] = level+1;
      levelData[coeff_ctr].noLevels=3;
    }

    for (ii=0; ii<levelData[coeff_ctr].noLevels; ii++)
    {
      err=(double)(levelData[coeff_ctr].level[ii]<<q_bits)-(double)levelData[coeff_ctr].levelDouble;
      levelData[coeff_ctr].errLevel[ii]=(err*err*(double)estErr4x4[qp_rem][i][j])/normFact; 
    }

    if(levelData[coeff_ctr].noLevels == 1)
      levelData[coeff_ctr].pre_level = 0;
    else
      levelData[coeff_ctr].pre_level = (absm (m4[j][i]) * levelscale[i][j] + leveloffset[i][j]) >> q_bits;
  }

  TrellisCAVLC_Q(m4, levelData, levelTrellis, block_type, b8, b4, coeff_num, lambda);
}
#endif

/*!
 ************************************************************************
 * \brief
 *    For new intra pred routines
 *
 * \par Input:
 *    Image par, 16x16 based intra mode
 *
 * \par Output:
 *    none
 ************************************************************************
 */
int dct_luma_16x16(int new_intra_mode)
{
  //int qp_const;
  int i,j;
  int ii,jj;
  int jdiv, jmod;
  int M1[16][16];
  int M4[4][4];
  int M5[4],M6[4];
  int M0[4][4][4][4];
  int run,scan_pos,coeff_ctr,level;
  int qp_per,qp_rem,q_bits;
  int ac_coef = 0;

  Macroblock *currMB = &img->mb_data[img->current_mb_nr];
  short is_field_mode = (img->field_picture || ( img->MbaffFrameFlag && currMB->mb_field));

  int   b8, b4;
  int*  DCLevel = img->cofDC[0][0];
  int*  DCRun   = img->cofDC[0][1];
  int*  ACLevel;
  int*  ACRun;
  int **levelscale,**leveloffset;
  int **invlevelscale;
  Boolean lossless_qpprime = (Boolean)((currMB->qp + img->bitdepth_luma_qp_scale)==0 && img->lossless_qpprime_flag==1);
  const byte (*pos_scan)[2] = is_field_mode ? FIELD_SCAN : SNGL_SCAN;
#ifdef RDO_Q
  levelDataStruct levelData[16];
  double  lambda_md=0;
#ifdef  INTERNAL_BIT_DEPTH_INCREASE
  double normFact = pow(2, (2 * DQ_BITS + 19))*(1<<(2*img->BitDepthIncrease));
#else
  double normFact = pow(2, (2 * DQ_BITS + 19));
#endif
  double err;
  int lowerInt, levelTrellis[16], k, kStart, kStop, noCoeff, estBits;
#endif

  // Note that we could just use currMB->qp here
  qp_per    = qp_per_matrix[(currMB->qp + img->bitdepth_luma_qp_scale - MIN_QP)];
  qp_rem    = qp_rem_matrix[(currMB->qp + img->bitdepth_luma_qp_scale - MIN_QP)];

  q_bits    = Q_BITS+qp_per;

#ifdef RDO_Q
  if(input->UseRDO_Q)
  {
    if ((img->type==B_SLICE) && img->nal_reference_idc)
    {
      lambda_md = img->lambda_md[5][img->masterQP];  
    }
    else
    {
      lambda_md = img->lambda_md[img->type][img->masterQP];
    }
  }
#endif

#ifdef ADAPTIVE_QUANTIZATION
  if(img->slice_fractional_quant_flag)
  {
    levelscale    = LevelScale4x4Luma_IAQMS[img->mb_iaqms_idx][1][qp_rem];
    invlevelscale = InvLevelScale4x4Luma_IAQMS[img->mb_iaqms_idx][1][qp_rem];
  }
  else
  {
    levelscale    = LevelScale4x4Luma[1][qp_rem];
    invlevelscale = InvLevelScale4x4Luma[1][qp_rem];
  }
  leveloffset   = LevelOffset4x4Luma[1][qp_per];

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -