📄 l4n.m
字号:
x_temp = [a1n(:,1); a2n(:,1); zeros(x3*y3, 1); zeros(x4*y4, 1)]; [h0_coeff, h1_coeff] = analysis_filters4(A1c, A2c, A3c, A4c, x, x_temp, Mquin); [x10, x20, Np, Nd] = VM_two_steps(a3, a4, A3c, A4c, x_min, h0_coeff, h1_coeff, Np, Nd, a3n(:,1), a4n(:,1)); x_min = [a1n(:,1); a2n(:,1); x10; x20]; % examine the adjustment results [h0_coeff, h1_coeff] = analysis_filters4(A1c, A2c, A3c, A4c, x, x_min, Mquin); g1_coeff = h0_coeff; for i = 1:length(g1_coeff(:,1)) j = 2-mod(i,2):2:length(g1_coeff(1,:)); g1_coeff(i,j) = -g1_coeff(i,j); end N_primal = Vanishing_num(g1_coeff); N_dual = Vanishing_num(h1_coeff);endInitial_point = x_min;xx(:,1) = x_min;phi(:, 1) = Vr'*(xx(:, 1) - xs); I1 = zeros(x1*y1+x2*y2+x3*y3+x4*y4, 1);I1(1:x1*y1) = ones(x1*y1, 1);I2 = zeros(x1*y1+x2*y2+x3*y3+x4*y4, 1);I2(1+x1*y1:x1*y1+x2*y2) = ones(x2*y2, 1);I3 = zeros(x1*y1+x2*y2+x3*y3+x4*y4, 1);I3(1+x1*y1+x2*y2:x1*y1+x2*y2+x3*y3) = ones(x3*y3, 1);I4 = zeros(x1*y1+x2*y2+x3*y3+x4*y4, 1);I4(1+x1*y1+x2*y2+x3*y3:x1*y1+x2*y2+x3*y3+x4*y4) = ones(x4*y4, 1);iter = 1;iter_t = 1;t = cputime;f_min = 100;G_max = 100;diff_Gmax = 1;diff_Gmax2 = 1;diff_Gmax3 = 0;if ini_point == 0 ini_step = 2;else ini_step = 1;endfor ini_iter = ini_step:3 delta = delta_g(3); beta = 50*norm(10^(-ini_iter-2)*ones(length(Vr(1,:)),1),2); level = levelc;% analysis filter coefficients [h0_coeff, h1_coeff] = analysis_filters4(A1c, A2c, A3c, A4c, x, xx(:,iter), Mquin); Gmax(iter,:) = CodingGain_num(h0_coeff, h1_coeff, 0.95, levelc, model, Mquin); Gt(iter) = -Gmax(iter,level); if Gt(iter) < f_min f_min = Gt(iter); x_min = xx(:, iter); G_max = -Gt(iter); end diff_Gmax = 1; diff_Gmax2 = 1; diff_Gmax3 = 0; while (abs(diff_Gmax) > 10^(-ini_iter-1)) && (abs(diff_Gmax2) > 10^(-ini_iter-1) && (diff_Gmax3 < 0.01)) t1 = cputime; save(outname) weight = weight_sep(N, M1, M2, wp, ws); [H1w,fx,fy] = freqz2(h1_coeff, N); H_ideal = H1w(1,1)*(1-diamond(N+1,N+1)); % the sum below should be equal to diff_H1(iter) diff_H1_1 = sum(sum((real(H1w) - H_ideal(1:N,1:N)).^2.*weight(1:N,1:N)))*((2*pi/N)^2); size1 = size(h1_coeff); i = -(size1(1)-1)/2:(size1(1)-1)/2; j = -(size1(2)-1)/2:(size1(2)-1)/2; [j,i] = meshgrid(j,i); D = sum(sum(h1_coeff.*((-1).^(i+j)))); H1w(1,1); [Hd_hat, Sd_hat, Cd_hat]= L4n_parameters(N, M1, M2, ws, wp, Vr_hat, x1, y1, x2, y2, x3, y3, xs_hat, phi(:, iter), H1w(1,1)); diff_H1(iter) = Sd_hat'*Sd_hat + Cd_hat; % linear constraint on delta_phi [A_phi, b_phi] = VM_4lifting_2(Np, Nd, x1, y1, x2, y2, x3, y3, x4, y4, phi(:,iter), xs, Vr); lengthp = length(Vr(1,:)); for i = 1:lengthp phi_temp = zeros(lengthp,1); phi_temp(i) = delta; x_temp = xx(:, iter) + Vr*phi_temp; [h0_coeff, h1_coeff] = analysis_filters4(A1c, A2c, A3c, A4c, x, x_temp, Mquin); G_temp = -CodingGain_num(h0_coeff, h1_coeff, 0.95,level,model, Mquin); G_temp = G_temp(level); phi_temp = zeros(lengthp,1); phi_temp(i) = -delta; x_temp = xx(:, iter) + Vr*phi_temp; [h0_coeff, h1_coeff] = analysis_filters4(A1c, A2c, A3c, A4c, x, x_temp, Mquin); G_temp2 = -CodingGain_num(h0_coeff, h1_coeff, 0.95,level,model, Mquin); G_temp2 = G_temp2(level); g(i) = (G_temp - G_temp2)/2/delta; g1(i) = (G_temp - Gt(iter))/delta; end % gradient around xx0 g = g(:); g1 = g1(:); % variable bound for the error function of H1 delta_h1 = sf*diff_H1(iter); % SOCP b = g; A1 = Hd_hat'; c1 = Sd_hat; b1 = zeros(lengthp,1); d1 = sqrt(delta_h1 - Cd_hat); A2 = eye(lengthp); c2 = zeros(lengthp,1); b2 = zeros(lengthp,1); d2 = beta; A3 = A_phi'; c3 = b_phi; b3 = zeros(lengthp,1); d3 = 1e-5; % with constraints on frequency response At1 = -[b1 A1]; At2 = -[b2 A2]; At3 = -[b3 A3]; At = [At1 At2 At3]; bt = -b; ct1 = [d1; c1]; ct2 = [d2; c2]; ct3 = [d3; c3]; ct = [ct1; ct2; ct3]; K.q = [size(At1,2) size(At2,2) size(At3,2)]; pars.fid = 0; [xsp, delta_phi, info] = sedumi(At, bt, ct, K, pars); info; % % insert a line-search step here% lambda = line_search4_2(1e-4, level, model, phi(:, iter), delta_phi, A1c, A2c, A3c, A4c, x, Vr, xs);% delta_phi = lambda*delta_phi; phi(:, iter+1) = phi(:, iter) + delta_phi; xx(:, iter+1) = xs + Vr*phi(:, iter+1); min = g'*delta_phi; [h0_coeff, h1_coeff] = analysis_filters4(A1c, A2c, A3c, A4c, x, xx(:, iter+1), Mquin); g1_coeff = h0_coeff; for i = 1:length(g1_coeff(:,1)) j = 2-mod(i,2):2:length(g1_coeff(1,:)); g1_coeff(i,j) = -g1_coeff(i,j); end N_primal = Vanishing_num(g1_coeff); N_dual = Vanishing_num(h1_coeff); if mod(iter,10)==1 iter format long x_min = x_min(:); format short end Gmax(iter+1,:) = CodingGain_num(h0_coeff, h1_coeff, 0.95,level,model, Mquin); Gt(iter+1) = -Gmax(iter+1,level); diff_Gmax = Gt(iter+1) - Gt(iter); if iter > 1 diff_Gmax2 = Gt(iter+1) - Gt(iter-1); end diff_H1(iter+1) = (Hd_hat*delta_phi+Sd_hat)'*(Hd_hat*delta_phi+Sd_hat) + Cd_hat; diff_H1_3 = (Hd_hat*delta_phi+Sd_hat)'*(Hd_hat*delta_phi+Sd_hat) + Cd_hat; if Gt(iter+1) < f_min f_min = Gt(iter+1); x_min = xx(:, iter+1); G_max = -Gt(iter+1); end t2 = cputime - t1; iter = iter + 1; Gopt = Gmax(iter,level); diff_Gmax3 = G_max - Gopt; Gmax_5iters = Gmax(max([1,iter-4]):iter, :); Gmax_iter = Gmax(iter, :) save(outname) end iter_t = iter; t = cputime - t; % adjust the result xx(:,iter) = x_min; phi(:, iter) = Vr'*(xx(:, iter) - xs); [A_phi, b_phi] = VM_4lifting_2(Np, Nd, x1, y1, x2, y2, x3, y3, x4, y4, phi(:,iter), xs, Vr); Hphi = zeros(length(phi(:,1)), length(phi(:,1))); Sphi = zeros(length(phi(:,1)), 1); for i = 1:length(b_phi) Hphi = A_phi(i,:)'*A_phi(i,:) + Hphi; Sphi = 2*b_phi(i)*A_phi(i,:)' + Sphi; end phi_min = -0.5*pinv(Hphi)*Sphi; phi(:, iter) = phi(:, iter) + phi_min; xx(:,iter) = Vr*phi(:,iter) + xs; [h0_coeff, h1_coeff] = analysis_filters4(A1c, A2c, A3c, A4c, x, xx(:, iter), Mquin); Gmax(iter,:) = CodingGain_num(h0_coeff, h1_coeff, 0.95, level, model, Mquin); Gt(iter) = -Gmax(iter,level); f_min = Gt(iter); x_min = xx(:, iter); G_max = -Gt(iter); x_min = x_min(:); if ini_iter == 3 format long A1_min = reshape([fliplr(x_min(1:x1*y1)') x_min(1:x1*y1)'], [x1 2*y1]) A2_min = reshape([fliplr(x_min(x1*y1+1:x1*y1+x2*y2)') x_min(x1*y1+1:x1*y1+x2*y2)'], [x2 2*y2]) A3_min = reshape([fliplr(x_min(x1*y1+x2*y2+1:x1*y1+x2*y2+x3*y3)') x_min(x1*y1+x2*y2+1:x1*y1+x2*y2+x3*y3)'], [x3 2*y3]) A4_min = reshape([fliplr(x_min(x1*y1+x2*y2+x3*y3+1:x1*y1+x2*y2+x3*y3+x4*y4)') x_min(x1*y1+x2*y2+x3*y3+1:x1*y1+x2*y2+x3*y3+x4*y4)'], [x4 2*y4]) format short Gmax_sep = CodingGain_num(h0_coeff, h1_coeff, 0.95, 6, 1, Mquin) Gmax_iso = CodingGain_num(h0_coeff, h1_coeff, 0.95, 6, 0, Mquin) % check the vanishing moments g0_coeff = h1_coeff; for i = 1:length(g0_coeff(:,1)) j = 2-mod(i,2):2:length(g0_coeff(1,:)); g0_coeff(i,j) = -g0_coeff(i,j); end g0_coeff = -g0_coeff; g1_coeff = h0_coeff; for i = 1:length(g1_coeff(:,1)) j = 2-mod(i,2):2:length(g1_coeff(1,:)); g1_coeff(i,j) = -g1_coeff(i,j); end g1_coeff = -g1_coeff; N_primal = Vanishing_num(g1_coeff) N_dual = Vanishing_num(h1_coeff) end level;endH0 = freqz2(h0_coeff, 1024);DC_gain = H0(513,513)H1 = freqz2(h1_coeff, 1024);Nyquist_gain = H1(1,1)clear H0 H1TotalIter = iter - 1save(outname)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -