📄 mlrcvblk.m
字号:
function [press,b] = mlrcvblk(x,y,split)
%MLRCVBLK Fast Cross validation for MLR using contiguous data blocks
% Inputs are the matrix of predictor variables (x), matrix
% of predicted variables (y), and number of divisions of the data
% (split). Outputs are the sum of the prediction residual error
% sum of squares for all the test sets (press),
% and the final regression vector (b).
%
% This cross validation routine forms the test sets out of
% contiguous blocks of data. No mean centering of subsets is
% used. This function is used primarily as a subroutine of GENALG.
%
% I/O format is:
% [press,b] = mlrcvblk(x,y,split);
% Copyright
% Eigenvector Technologies
% 1995
[mx,nx] = size(x);
[my,ny] = size(y);
if mx ~= my
error('Number of samples must be the same in both blocks')
end
press = 0;
ind = ones(split,2);
for i = 1:split
ind(i,2) = round(i*mx/split);
end
for i = 1:split-1
ind(i+1,1) = ind(i,2) +1;
end
for i = 1:split
calx = [x(1:ind(i,1)-1,:); x(ind(i,2)+1:mx,:)];
testx = x(ind(i,1):ind(i,2),:);
caly = [y(1:ind(i,1)-1,:); y(ind(i,2)+1:mx,:)];
testy = y(ind(i,1):ind(i,2),:);
[mcx,ncx] = size(calx);
if mcx >= ncx
bbr = calx\caly;
else
[u,s,v] = svd(calx);
s(1:mx:1:mx) = inv(s(1:mx:1:mx));
bbr = v*s'*u'*y;
end
ypred = testx*bbr;
press = press + sum((ypred-testy).^2);
end
if nargout > 1
if mx >= nx
b = calx\caly;
else
[u,s,v] = svd(calx);
s(1:mx:1:mx) = inv(s(1:mx:1:mx));
b = v*s'*u'*y;
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -