📄 nnpls1.m
字号:
function [n,wts,upred]=nnpls1(t,u,ttest,utest,ii,opts)
%NNPLS1 Calculates a single NN-PLS factor
% Routine to carry out NNPLS. A conjugate gradient optimization
% subroutine is supplied. If the user has the Optimization Toolbox
% leastsq.m can be used. nnpls1.m calls inner.m, and it requires
% t and u which are the training scores, and ttest and utest which are
% the test scores and ii which is the current factor being calculated
% Test set validation is used to determine the number of
% sigmoids in the inner neural network that minimizes the PRESS.
%
% If used, the optional input (opts) must be a three element row vector.
% Set opts(1) = 1 to plot the inner relationship as the function proceeds.
% Set opts(2) to change the maximum number of sigmoids for each
% latent variables from the default of six. If opts(2) = 0, the
% default of 6 will be used.
% Set opts(3) to change the tolerance on the change in press when
% determining number of sigmoids to use in each factor. This is normally
% set to 0.01 (1%).
%
% nnpls1.m returns the number of sigmoids, n, the network weights, wts
% and the u scores predicted by the inner neural net, upred. The I/O
% syntax is [n,wts,upred]=nnpls1(t,u,ttest,utest,ii,opts)
% Copyright
% Thomas Mc Avoy
% 1994
% Distributed by Eigenvector Technologies
% Modified by BMW 5-8-95
if nargin < 6
plots = 0;
sigmax = 6;
tol = .01;
else
plots = opts(1);
if plots ~= 1, plots = 0; end
sigmax = opts(2);
if sigmax <= 0, sigmax = 6; end
tol = opts(3);
end
n=1;
% Calculate linear PLS coefficient to initialize neural net
b=u'*t/(t'*t);
% check for plotting
if plots==1
clf
plot(t,b*t)
hold on
s = sprintf('Inner Relationship For Factor %g',ii);
title(s)
s = sprintf('Score (t) on X-block Factor %g',ii);
xlabel(s);
s = sprintf('Score (u) on Y-block Factor %g',ii);
ylabel(s);
plot(ttest,utest,'xy')
plot(t,u,'oc')
z = axis;
zx1 = z(1)+(z(2)-z(1))*.07;
zy1 = z(3)+(z(4)-z(3))*.95;
zx2 = z(1)+(z(2)-z(1))*.12;
zy2 = z(3)+(z(4)-z(3))*.90;
zx3a = z(1)+(z(2)-z(1))*.06;
zx3b = z(1)+(z(2)-z(1))*.08;
zy3 = z(3)+(z(4)-z(3))*.85;
plot(zx1,zy1,'xy')
plot(zx1,zy2,'oc')
plot([zx3a zx3b],[zy3 zy3],'-r')
text(zx2,zy1,'Testing Data')
text(zx2,zy2,'Training Data')
text(zx2,zy3,'Inner Relationship Fit')
hold off
pause
end
% Calculate inner model for 1 sigmoid using optimization
[weights,f0]=inner(n,b,t,u,weights,plots);
% Calculate the press for 1 sigmoid
beta=weights(1:2);
kin=[weights(3)';weights(4)'];
[uupred,uusig]=bckprpnn(ttest,kin,beta);
press=norm(utest-uupred)^2;
% Calculate the press for n sigmoids
% if PRESS goes up terminate the calculation. Also terminate if change
% in objective function is less than 1% or specified tolerance
n=2;
check=ones(2,1);
while any(check)>0;
savwts=weights;
savpress=press;
if n==2
check(1,1)=0;
end
[weights,f1]=inner(n,b,t,u,weights,plots);
% check if objective function changes by less than 1 or specified tolerance
if (abs((f1-f0)/f1))<tol;
check(2,1)=0;
weights=savwts;
n=n-1;
else
f0=f1;
end
beta=weights(1:n+1);
kin=[weights(n+2:2*n+1)';weights(2*n+2:3*n+1)'];
[uupred,uusig]=bckprpnn(ttest,kin,beta);
press1=norm(utest-uupred)^2;
if check(2,1)~=0;
if (press1>press);
check(2,1)=0;
weights=savwts;
n=n-1;
else
n=n+1;
press=press1;
end
end
% check if 6 sigmoids have been used. If so terminate.
if n==sigmax+1
n=n-1;
check(2,1)=0;
s = sprintf('%g sigmoids have been used and min PRESS not obtained',sigmax);
disp(s)
end
end
wts=zeros(3*sigmax + 1,1);
wts(1:3*n+1,1)=weights(1:3*n+1);
[upred,usig]=bckprpnn(t,kin,beta);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -