📄 gradnet.m
字号:
function grad=gradnet(t,u,beta,kin,Lambda)
%GRADNET Gradient of inner network with respect to network weights
% This routine returns the gradient of the inner network with
% respect to the network weights.
% Copyright
% Thomas Mc Avoy
% 1994
% Distributed by Eigenvector Technologies
% Modified by BMW 5-8-95
n=length(beta)-1;
m1=length(t);
T=[ones(m1,1),t];
Z=T*kin;
[upred,usig]=bckprpnn(t,kin,beta);
sigd=[2.*exp(-Z)./(1+exp(-Z)).^2];
% sigd equals derivative sigma with respect to Z
bp=beta(2:n+1,1);
% bp = beta less bias. bp's multiply sigmas.
sigt=sigd'*diag(t);
sigd=sigd*diag(bp);
sigt=(sigt'*diag(bp));
% Calculate Jacobian of objective function
jac=zeros(m1+3*n+1,3*n+1);
jac(1:m1,:)=[-usig,-sigd,-sigt];
jac(m1+1:m1+3*n+1,1:3*n+1)=Lambda*eye(3*n+1);
jac=jac';
grad=2.*jac*[(u-upred);beta;kin(1,:)';kin(2,:)'];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -