📄 contents.m
字号:
% PLS_Toolbox.
% Version 1.5.1 22-October-95
% Copyright (c) 1995 by Eigenvector Technologies
% Barry M. Wise and Neal B. Gallagher
%
% Data Scaling and Preprocessing.
% auto - Autoscales data.
% mncn - Mean centers data.
% scale - Scales data using specified means and std. devs.
% rescale - Scales data back to original scaling.
% delsamps - Deletes samples from data matrices.
% savgol - Savitsky-Golay smoothing and derivatives.
% shuffle - Randomly re-orders matrix rows.
% dp - Adds a diagonal line to prediction plots.
%
% Elementary Statistics.
% ttestp - t test and inverse t test statistic.
% ftest - Inverse F test statistic.
% anova1w - One-way analysis of variance.
% anova2w - Two-way analysis of variance.
%
% Principal Components, Cluster and Evolving Factor Analysis.
% pca - Principal components analysis.
% pcapro - Applies existing PCA model to new data.
% mdpca - PCA for matrices with missing data.
% bigpca - PCA for large matrices.
% pltloads - Two and three dimensional loadings plots.
% pltscrs - Two and three dimensional scores plots.
% cluster - K-means and KNN cluster analysis with dendrograms.
% gcluster - Graphical user interface for cluster
% evolvfa - Evolving factor analysis
%
% Principal Components Regression.
% pcr1 - Principal components regression.
% pcrcv - General cross-validation for PCR models.
% pcrcv1 - Leave one out cross-validation for PCR models.
% pcrcvblk - PCR cross validation using contiguous data blocks.
% pcrcvrnd - PCR cross validation using SDEP.
%
% Partial Least Squares Regression.
% pls - Partial least squares regression.
% plsnipal - NIPALS algorithm for one PLS latent variable.
% plspred - Predictions based on existing PLS model.
% conpred - Converts PLS models to regression vectors.
% conpred1 - Converts PLS models to single regression vector.
% plscv - General cross-validation for PLS models.
% plscv1 - Leave one out cross-validation for PLS models.
% pcrcvblk - PLS cross validation using contiguous data blocks.
% pcrcvrnd - PLS cross validation using SDEP.
% simpls1 - PLS by SIMPLS for univariate Y.
%
% Other Linear Regression Methods.
% cr - Continuum regression by SIMPLS algorithm
% crcvrnd - Cross-validation for continuum regression.
% powerpls - CR by "powered" method - obsolete, use cr.
% ridge - Ridge regression by Hoerl-Kennard method.
% ridgecv - Ridge regression by cross-validation.
%
% General Regression Modelling.
% modlmker - Develops PCR, PLS and RR models.
% modlrder - Displays information from MODLMKER models.
% modlpred - Predictions based on models created by MODLMKER.
% modlgui - Graphical user interface for modlmker
%
% Non-Linear Regression Methods.
% polypls - PLS with polynomial inner-relationships.
% polypred - New predictions with poly-PLS models.
% spl_pls - PLS with spline inner-relationships.
% splspred - New predictions with SPL_PLS.
% splnfit - Spline fits to bivariate data.
% splnpred - New predictions based on spline fits.
% lwrpred - Predictions based on LWR model.
% lwrxy - LWR predictions with y-distance weighting.
%
% PLS with Neural Network Inner Relationships Functions.
% nnpls - Cross-validation of NN-PLS models.
% collapse - Converts NN-PLS models to NN form.
% nnplsbld - Parameterizes NN-PLS models given form.
% nnplsprd - Predictions from collapsed NN-PLS models.
%
% Multivariate Instrument Standardization.
% stdgen - Instrument standardization transform generator.
% stdsslct - Selects data subsets for use in standardization.
%
% Multivariate Statistical Process Control.
% replace - Replaces variables based on PCA or PLS models.
% plsrsgn - Generates a matrix of PLS models for MSPC.
% plsrsgcv - Cross-validation for PLSRSGN models.
%
% Identification of Finite Impulse Response Models.
% plspuls - Identifies FIR models by PLS for MISO systems.
% fir2ss - Transforms FIR model to equiv. state space model.
% writein2 - Writes matrices for dynamic model identification.
% wrtpulse - Writes matrices with delays for identification.
% autocor - Auto-correlation function for time series data.
% crosscor - Cross-correlation function for time series data.
%
% PLS_Toolbox Demonstrations.
% statdemo - t test, F test, one and two-way ANOVA.
% pcademo - Pricipal components analysis.
% efa_demo - Evolving factor analysis.
% mddemo - PCA for missing data.
% clstrdmo - Statistical cluster analysis and dendrograms.
% plsdemo - Partial least squares regression and PCR.
% ridgdemo - Ridge regression functions.
% pwrdemo - Continuum regression by "power" method.
% modldemo - PLS, PCR and RR modelling with MODLMKER.
% polydemo - PLS with polynomial inner relationship.
% lwrdemo - Locally weighted regression functions.
% splndemo - PLS with spline inner relationships.
% stddemo - Multivariate instrument standardization.
% sgdemo - Savitsky-Golay smoothing and derivatives.
% ccordemo - Cross- and auto-correlation.
% pulsdemo - Identification of FIR models with PLS.
% rsgndemo - Collections of PLS models for MSPC.
% rplcdemo - Replacement of failed sensors with MSPC models.
%
% PLS_Toolbox Test Data Sets.
% splndata - Synthetic data for spline demo.
% nir_data - Near infrared spectra of pseudo gasoline samples.
% pcadata - Liquid-fed ceramic melter data for pca demo.
% ridgdata - Hald data set of cement samples.
% repdata - Liquid-fed ceramic melter data for replace demo.
% pol_data - Non-linear surge tank data for polypls demo.
% pulsdata - Liquid-fed ceramic melter data for plspulsm demo.
% plsdata - Liquid-fed ceramic melter data for pls demo.
% statdata - Data sets for statdemo
%
% Further Information.
% readme - Release notes on PLS_Toolbox 1.5
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -