📄 test_uniform.cpp
字号:
// Copyright Paul Bristow 2007.// Copyright John Maddock 2006.// Use, modification and distribution are subject to the// Boost Software License, Version 1.0.// (See accompanying file LICENSE_1_0.txt// or copy at http://www.boost.org/LICENSE_1_0.txt)// test_uniform.cpp#ifdef _MSC_VER# pragma warning(disable: 4127) // conditional expression is constant.# pragma warning(disable: 4100) // unreferenced formal parameter.#endif#include <boost/math/concepts/real_concept.hpp> // for real_concept#include <boost/test/included/test_exec_monitor.hpp> // Boost.Test#include <boost/test/floating_point_comparison.hpp>#include <boost/math/distributions/uniform.hpp> using boost::math::uniform_distribution;#include <boost/math/tools/test.hpp> #include <iostream> using std::cout; using std::endl; using std::setprecision;#include <limits> using std::numeric_limits;template <class RealType>void check_uniform(RealType lower, RealType upper, RealType x, RealType p, RealType q, RealType tol){ BOOST_CHECK_CLOSE_FRACTION( ::boost::math::cdf( uniform_distribution<RealType>(lower, upper), // distribution. x), // random variable. p, // probability. tol); // tolerance. BOOST_CHECK_CLOSE_FRACTION( ::boost::math::cdf( complement( uniform_distribution<RealType>(lower, upper), // distribution. x)), // random variable. q, // probability complement. tol); // tolerance. BOOST_CHECK_CLOSE_FRACTION( ::boost::math::quantile( uniform_distribution<RealType>(lower, upper), // distribution. p), // probability. x, // random variable. tol); // tolerance. BOOST_CHECK_CLOSE_FRACTION( ::boost::math::quantile( complement( uniform_distribution<RealType>(lower, upper), // distribution. q)), // probability complement. x, // random variable. tol); // tolerance.} // void check_uniformtemplate <class RealType>void test_spots(RealType){ // Basic sanity checks // // These test values were generated for the normal distribution // using the online calculator at // http://espse.ed.psu.edu/edpsych/faculty/rhale/hale/507Mat/statlets/free/pdist.htm // // Tolerance is just over 5 decimal digits expressed as a fraction: // that's the limit of the test data. RealType tolerance = 2e-5f; cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << "." << endl; using std::exp; // Tests for PDF // BOOST_CHECK_CLOSE_FRACTION( // x == upper pdf(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0)), static_cast<RealType>(1), tolerance); BOOST_CHECK_CLOSE_FRACTION( // x == lower pdf(uniform_distribution<RealType>(0, 1), static_cast<RealType>(1)), static_cast<RealType>(1), tolerance); BOOST_CHECK_CLOSE_FRACTION( // x > upper pdf(uniform_distribution<RealType>(0, 1), static_cast<RealType>(-1)), static_cast<RealType>(0), tolerance); BOOST_CHECK_CLOSE_FRACTION( // x < lower pdf(uniform_distribution<RealType>(0, 1), static_cast<RealType>(2)), static_cast<RealType>(0), tolerance); if(std::numeric_limits<RealType>::has_infinity) { // BOOST_CHECK tests for infinity using std::numeric_limits<>::infinity() // Note that infinity is not implemented for real_concept, so these tests // are only done for types, like built-in float, double.. that have infinity. // Note that these assume that BOOST_MATH_OVERFLOW_ERROR_POLICY is NOT throw_on_error. // #define BOOST_MATH_OVERFLOW_ERROR_POLICY == throw_on_error would give a throw here. // #define BOOST_MATH_DOMAIN_ERROR_POLICY == throw_on_error IS defined, so the throw path // of error handling is tested below with BOOST_CHECK_THROW tests. BOOST_CHECK_THROW( // x == infinity should NOT be OK. pdf(uniform_distribution<RealType>(0, 1), static_cast<RealType>(std::numeric_limits<RealType>::infinity())), std::domain_error); BOOST_CHECK_THROW( // x == minus infinity should be OK too. pdf(uniform_distribution<RealType>(0, 1), static_cast<RealType>(-std::numeric_limits<RealType>::infinity())), std::domain_error); } if(std::numeric_limits<RealType>::has_quiet_NaN) { // BOOST_CHECK tests for NaN using std::numeric_limits<>::has_quiet_NaN() - should throw. BOOST_CHECK_THROW( pdf(uniform_distribution<RealType>(0, 1), static_cast<RealType>(std::numeric_limits<RealType>::quiet_NaN())), std::domain_error); BOOST_CHECK_THROW( pdf(uniform_distribution<RealType>(0, 1), static_cast<RealType>(-std::numeric_limits<RealType>::quiet_NaN())), std::domain_error); } // test for x = NaN using std::numeric_limits<>::quiet_NaN() // cdf BOOST_CHECK_EQUAL( // x < lower cdf(uniform_distribution<RealType>(0, 1), static_cast<RealType>(-1)), static_cast<RealType>(0) ); BOOST_CHECK_CLOSE_FRACTION( cdf(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0)), static_cast<RealType>(0), tolerance); BOOST_CHECK_CLOSE_FRACTION( cdf(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0.5)), static_cast<RealType>(0.5), tolerance); BOOST_CHECK_CLOSE_FRACTION( cdf(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0.1)), static_cast<RealType>(0.1), tolerance); BOOST_CHECK_CLOSE_FRACTION( cdf(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0.9)), static_cast<RealType>(0.9), tolerance); BOOST_CHECK_EQUAL( // x > upper cdf(uniform_distribution<RealType>(0, 1), static_cast<RealType>(2)), static_cast<RealType>(1)); // cdf complement BOOST_CHECK_EQUAL( // x < lower cdf(complement(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0))), static_cast<RealType>(1)); BOOST_CHECK_EQUAL( // x == 0 cdf(complement(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0))), static_cast<RealType>(1)); BOOST_CHECK_CLOSE_FRACTION( // x = 0.1 cdf(complement(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0.1))), static_cast<RealType>(0.9), tolerance); BOOST_CHECK_CLOSE_FRACTION( // x = 0.5 cdf(complement(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0.5))), static_cast<RealType>(0.5), tolerance); BOOST_CHECK_EQUAL( // x == 1 cdf(complement(uniform_distribution<RealType>(0, 1), static_cast<RealType>(1))), static_cast<RealType>(0)); BOOST_CHECK_EQUAL( // x > upper cdf(complement(uniform_distribution<RealType>(0, 1), static_cast<RealType>(2))), static_cast<RealType>(1)); // quantile BOOST_CHECK_CLOSE_FRACTION( quantile(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0.9)), static_cast<RealType>(0.9), tolerance); BOOST_CHECK_CLOSE_FRACTION( quantile(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0.1)), static_cast<RealType>(0.1), tolerance); BOOST_CHECK_CLOSE_FRACTION( quantile(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0.5)), static_cast<RealType>(0.5), tolerance); BOOST_CHECK_CLOSE_FRACTION( quantile(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0)), static_cast<RealType>(0), tolerance); BOOST_CHECK_CLOSE_FRACTION( quantile(uniform_distribution<RealType>(0, 1), static_cast<RealType>(1)), static_cast<RealType>(1), tolerance); // quantile complement BOOST_CHECK_CLOSE_FRACTION( quantile(complement(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0.1))), static_cast<RealType>(0.9), tolerance); BOOST_CHECK_CLOSE_FRACTION( quantile(complement(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0.9))), static_cast<RealType>(0.1), tolerance); BOOST_CHECK_CLOSE_FRACTION( quantile(complement(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0.5))), static_cast<RealType>(0.5), tolerance); BOOST_CHECK_CLOSE_FRACTION( quantile(complement(uniform_distribution<RealType>(0, 1), static_cast<RealType>(0))), static_cast<RealType>(1), tolerance); BOOST_CHECK_CLOSE_FRACTION( quantile(complement(uniform_distribution<RealType>(0, 1), static_cast<RealType>(1))), static_cast<RealType>(1), tolerance); // Some tests using a different location & scale, neight zero or unity. BOOST_CHECK_CLOSE_FRACTION( // x == mid pdf(uniform_distribution<RealType>(-1, 2), static_cast<RealType>(1)), static_cast<RealType>(0.3333333333333333333333333333333333333333333333333333), tolerance); BOOST_CHECK_CLOSE_FRACTION( // x == upper pdf(uniform_distribution<RealType>(-1, 2), static_cast<RealType>(+2)), static_cast<RealType>(0.3333333333333333333333333333333333333333333333333333), // 1 / (2 - -1) = 1/3 tolerance);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -