📄 test_normal.cpp
字号:
// Copyright Paul A. Bristow 2007.// Copyright John Maddock 2007.// Use, modification and distribution are subject to the// Boost Software License, Version 1.0.// (See accompanying file LICENSE_1_0.txt// or copy at http://www.boost.org/LICENSE_1_0.txt)// test_normal.cpp// http://en.wikipedia.org/wiki/Normal_distribution// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm// Also:// Weisstein, Eric W. "Normal Distribution."// From MathWorld--A Wolfram Web Resource.// http://mathworld.wolfram.com/NormalDistribution.html#ifdef _MSC_VER#pragma warning (disable: 4127) // conditional expression is constant// caused by using if(std::numeric_limits<RealType>::has_infinity)// and if (std::numeric_limits<RealType>::has_quiet_NaN)#endif#include <boost/math/concepts/real_concept.hpp> // for real_concept#include <boost/test/included/test_exec_monitor.hpp> // Boost.Test#include <boost/test/floating_point_comparison.hpp>#include <boost/math/distributions/normal.hpp> using boost::math::normal_distribution;#include <boost/math/tools/test.hpp>#include <iostream> using std::cout; using std::endl; using std::setprecision;#include <limits> using std::numeric_limits;template <class RealType>RealType NaivePDF(RealType mean, RealType sd, RealType x){ // Deliberately naive PDF calculator again which // we'll compare our pdf function. However some // published values to compare against would be better.... using namespace std; return exp(-(x-mean)*(x-mean)/(2*sd*sd))/(sd * sqrt(2*boost::math::constants::pi<RealType>()));}template <class RealType>void check_normal(RealType mean, RealType sd, RealType x, RealType p, RealType q, RealType tol){ BOOST_CHECK_CLOSE( ::boost::math::cdf( normal_distribution<RealType>(mean, sd), // distribution. x), // random variable. p, // probability. tol); // %tolerance. BOOST_CHECK_CLOSE( ::boost::math::cdf( complement( normal_distribution<RealType>(mean, sd), // distribution. x)), // random variable. q, // probability complement. tol); // %tolerance. BOOST_CHECK_CLOSE( ::boost::math::quantile( normal_distribution<RealType>(mean, sd), // distribution. p), // probability. x, // random variable. tol); // %tolerance. BOOST_CHECK_CLOSE( ::boost::math::quantile( complement( normal_distribution<RealType>(mean, sd), // distribution. q)), // probability complement. x, // random variable. tol); // %tolerance.}template <class RealType>void test_spots(RealType){ // Basic sanity checks RealType tolerance = 1e-2f; // 1e-4 (as %) // Some tests only pass at 1e-4 because values generated by // http://faculty.vassar.edu/lowry/VassarStats.html // give only 5 or 6 *fixed* places, so small values have fewer digits. // Check some bad parameters to the distribution, BOOST_CHECK_THROW(boost::math::normal_distribution<RealType> nbad1(0, 0), std::domain_error); // zero sd BOOST_CHECK_THROW(boost::math::normal_distribution<RealType> nbad1(0, -1), std::domain_error); // negative sd // Tests on extreme values of random variate x, if has numeric_limit infinity etc. normal_distribution<RealType> N01; if(std::numeric_limits<RealType>::has_infinity) { BOOST_CHECK_EQUAL(pdf(N01, +std::numeric_limits<RealType>::infinity()), 0); // x = + infinity, pdf = 0 BOOST_CHECK_EQUAL(pdf(N01, -std::numeric_limits<RealType>::infinity()), 0); // x = - infinity, pdf = 0 BOOST_CHECK_EQUAL(cdf(N01, +std::numeric_limits<RealType>::infinity()), 1); // x = + infinity, cdf = 1 BOOST_CHECK_EQUAL(cdf(N01, -std::numeric_limits<RealType>::infinity()), 0); // x = - infinity, cdf = 0 BOOST_CHECK_EQUAL(cdf(complement(N01, +std::numeric_limits<RealType>::infinity())), 0); // x = + infinity, c cdf = 0 BOOST_CHECK_EQUAL(cdf(complement(N01, -std::numeric_limits<RealType>::infinity())), 1); // x = - infinity, c cdf = 1 BOOST_CHECK_THROW(boost::math::normal_distribution<RealType> nbad1(std::numeric_limits<RealType>::infinity(), static_cast<RealType>(1)), std::domain_error); // +infinite mean BOOST_CHECK_THROW(boost::math::normal_distribution<RealType> nbad1(-std::numeric_limits<RealType>::infinity(), static_cast<RealType>(1)), std::domain_error); // -infinite mean BOOST_CHECK_THROW(boost::math::normal_distribution<RealType> nbad1(static_cast<RealType>(0), std::numeric_limits<RealType>::infinity()), std::domain_error); // infinite sd } if (std::numeric_limits<RealType>::has_quiet_NaN) { // No longer allow x to be NaN, then these tests should throw. BOOST_CHECK_THROW(pdf(N01, +std::numeric_limits<RealType>::quiet_NaN()), std::domain_error); // x = NaN BOOST_CHECK_THROW(cdf(N01, +std::numeric_limits<RealType>::quiet_NaN()), std::domain_error); // x = NaN BOOST_CHECK_THROW(cdf(complement(N01, +std::numeric_limits<RealType>::quiet_NaN())), std::domain_error); // x = + infinity BOOST_CHECK_THROW(quantile(N01, +std::numeric_limits<RealType>::quiet_NaN()), std::domain_error); // p = + infinity BOOST_CHECK_THROW(quantile(complement(N01, +std::numeric_limits<RealType>::quiet_NaN())), std::domain_error); // p = + infinity } cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << " %" << endl; check_normal( static_cast<RealType>(5), static_cast<RealType>(2), static_cast<RealType>(4.8), static_cast<RealType>(0.46017), static_cast<RealType>(1 - 0.46017), tolerance); check_normal( static_cast<RealType>(5), static_cast<RealType>(2), static_cast<RealType>(5.2), static_cast<RealType>(1 - 0.46017), static_cast<RealType>(0.46017), tolerance); check_normal( static_cast<RealType>(5), static_cast<RealType>(2), static_cast<RealType>(2.2), static_cast<RealType>(0.08076), static_cast<RealType>(1 - 0.08076), tolerance); check_normal( static_cast<RealType>(5), static_cast<RealType>(2), static_cast<RealType>(7.8), static_cast<RealType>(1 - 0.08076), static_cast<RealType>(0.08076), tolerance); check_normal( static_cast<RealType>(-3), static_cast<RealType>(5), static_cast<RealType>(-4.5), static_cast<RealType>(0.38209), static_cast<RealType>(1 - 0.38209), tolerance); check_normal( static_cast<RealType>(-3), static_cast<RealType>(5), static_cast<RealType>(-1.5), static_cast<RealType>(1 - 0.38209), static_cast<RealType>(0.38209), tolerance); check_normal( static_cast<RealType>(-3), static_cast<RealType>(5), static_cast<RealType>(-8.5), static_cast<RealType>(0.13567), static_cast<RealType>(1 - 0.13567), tolerance); check_normal( static_cast<RealType>(-3), static_cast<RealType>(5), static_cast<RealType>(2.5), static_cast<RealType>(1 - 0.13567), static_cast<RealType>(0.13567), tolerance); // // Tests for PDF: we know that the peak value is at 1/sqrt(2*pi) // tolerance = boost::math::tools::epsilon<RealType>() * 5 * 100; // 5 eps as a percentage BOOST_CHECK_CLOSE( pdf(normal_distribution<RealType>(), static_cast<RealType>(0)), static_cast<RealType>(0.3989422804014326779399460599343818684759L), // 1/sqrt(2*pi) tolerance); BOOST_CHECK_CLOSE( pdf(normal_distribution<RealType>(3), static_cast<RealType>(3)), static_cast<RealType>(0.3989422804014326779399460599343818684759L), tolerance); BOOST_CHECK_CLOSE( pdf(normal_distribution<RealType>(3, 5), static_cast<RealType>(3)), static_cast<RealType>(0.3989422804014326779399460599343818684759L / 5), tolerance); // // Spot checks for mean = -5, sd = 6: // for(RealType x = -15; x < 5; x += 0.125) { BOOST_CHECK_CLOSE( pdf(normal_distribution<RealType>(-5, 6), x), NaivePDF(RealType(-5), RealType(6), x), tolerance); } RealType tol2 = boost::math::tools::epsilon<RealType>() * 5; normal_distribution<RealType> dist(8, 3); RealType x = static_cast<RealType>(0.125); using namespace std; // ADL of std names. // mean: BOOST_CHECK_CLOSE( mean(dist) , static_cast<RealType>(8), tol2); // variance: BOOST_CHECK_CLOSE( variance(dist) , static_cast<RealType>(9), tol2); // std deviation: BOOST_CHECK_CLOSE( standard_deviation(dist) , static_cast<RealType>(3), tol2); // hazard: BOOST_CHECK_CLOSE( hazard(dist, x) , pdf(dist, x) / cdf(complement(dist, x)), tol2); // cumulative hazard: BOOST_CHECK_CLOSE( chf(dist, x) , -log(cdf(complement(dist, x))), tol2); // coefficient_of_variation: BOOST_CHECK_CLOSE( coefficient_of_variation(dist) , standard_deviation(dist) / mean(dist), tol2); // mode: BOOST_CHECK_CLOSE( mode(dist) , static_cast<RealType>(8), tol2); BOOST_CHECK_CLOSE( median(dist) , static_cast<RealType>(8), tol2); // skewness: BOOST_CHECK_CLOSE( skewness(dist) , static_cast<RealType>(0), tol2); // kertosis: BOOST_CHECK_CLOSE( kurtosis(dist) , static_cast<RealType>(3), tol2); // kertosis excess: BOOST_CHECK_CLOSE( kurtosis_excess(dist) , static_cast<RealType>(0), tol2); normal_distribution<RealType> norm01(0, 1); // Test default (0, 1) BOOST_CHECK_CLOSE( mean(norm01), static_cast<RealType>(0), 0); // Mean == zero normal_distribution<RealType> defsd_norm01(0); // Test default (0, sd = 1) BOOST_CHECK_CLOSE( mean(defsd_norm01), static_cast<RealType>(0), 0); // Mean == zero normal_distribution<RealType> def_norm01; // Test default (0, sd = 1) BOOST_CHECK_CLOSE( mean(def_norm01), static_cast<RealType>(0), 0); // Mean == zero BOOST_CHECK_CLOSE( standard_deviation(def_norm01), static_cast<RealType>(1), 0); // Mean == zero} // template <class RealType>void test_spots(RealType)int test_main(int, char* []){ // Check that can generate normal distribution using the two convenience methods: boost::math::normal myf1(1., 2); // Using typedef normal_distribution<> myf2(1., 2); // Using default RealType double. boost::math::normal myn01; // Use default values. // Note NOT myn01() as the compiler will interpret as a function! // Check the synonyms, provided to allow generic use of find_location and find_scale. BOOST_CHECK_EQUAL(myn01.mean(), myn01.location()); BOOST_CHECK_EQUAL(myn01.standard_deviation(), myn01.scale()); // Basic sanity-check spot values. // (Parameter value, arbitrarily zero, only communicates the floating point type). test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 % test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 %#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS test_spots(0.0L); // Test long double.#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x0582)) test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.#endif#else std::cout << "<note>The long double tests have been disabled on this platform " "either because the long double overloads of the usual math functions are " "not available at all, or because they are too inaccurate for these tests " "to pass.</note>" << std::cout;#endif return 0;} // int test_main(int, char* [])/*Output:Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_normal.exe"Running 1 test case...Tolerance for type float is 0.01 %Tolerance for type double is 0.01 %Tolerance for type long double is 0.01 %Tolerance for type class boost::math::concepts::real_concept is 0.01 %*** No errors detected*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -