⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 test_normal.cpp

📁 Boost provides free peer-reviewed portable C++ source libraries. We emphasize libraries that work
💻 CPP
字号:
// Copyright Paul A. Bristow 2007.// Copyright John Maddock 2007.// Use, modification and distribution are subject to the// Boost Software License, Version 1.0.// (See accompanying file LICENSE_1_0.txt// or copy at http://www.boost.org/LICENSE_1_0.txt)// test_normal.cpp// http://en.wikipedia.org/wiki/Normal_distribution// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm// Also:// Weisstein, Eric W. "Normal Distribution."// From MathWorld--A Wolfram Web Resource.// http://mathworld.wolfram.com/NormalDistribution.html#ifdef _MSC_VER#pragma warning (disable: 4127) // conditional expression is constant// caused by using   if(std::numeric_limits<RealType>::has_infinity)// and   if (std::numeric_limits<RealType>::has_quiet_NaN)#endif#include <boost/math/concepts/real_concept.hpp> // for real_concept#include <boost/test/included/test_exec_monitor.hpp> // Boost.Test#include <boost/test/floating_point_comparison.hpp>#include <boost/math/distributions/normal.hpp>    using boost::math::normal_distribution;#include <boost/math/tools/test.hpp>#include <iostream>   using std::cout;   using std::endl;   using std::setprecision;#include <limits>  using std::numeric_limits;template <class RealType>RealType NaivePDF(RealType mean, RealType sd, RealType x){   // Deliberately naive PDF calculator again which   // we'll compare our pdf function.  However some   // published values to compare against would be better....   using namespace std;   return exp(-(x-mean)*(x-mean)/(2*sd*sd))/(sd * sqrt(2*boost::math::constants::pi<RealType>()));}template <class RealType>void check_normal(RealType mean, RealType sd, RealType x, RealType p, RealType q, RealType tol){   BOOST_CHECK_CLOSE(      ::boost::math::cdf(         normal_distribution<RealType>(mean, sd),       // distribution.         x),                                            // random variable.         p,                                             // probability.         tol);                                          // %tolerance.   BOOST_CHECK_CLOSE(      ::boost::math::cdf(         complement(            normal_distribution<RealType>(mean, sd),    // distribution.            x)),                                        // random variable.         q,                                             // probability complement.         tol);                                          // %tolerance.   BOOST_CHECK_CLOSE(      ::boost::math::quantile(         normal_distribution<RealType>(mean, sd),       // distribution.         p),                                            // probability.         x,                                             // random variable.         tol);                                          // %tolerance.   BOOST_CHECK_CLOSE(      ::boost::math::quantile(         complement(            normal_distribution<RealType>(mean, sd),    // distribution.            q)),                                        // probability complement.         x,                                             // random variable.         tol);                                          // %tolerance.}template <class RealType>void test_spots(RealType){   // Basic sanity checks   RealType tolerance = 1e-2f; // 1e-4 (as %)   // Some tests only pass at 1e-4 because values generated by   // http://faculty.vassar.edu/lowry/VassarStats.html   // give only 5 or 6 *fixed* places, so small values have fewer digits.  // Check some bad parameters to the distribution,   BOOST_CHECK_THROW(boost::math::normal_distribution<RealType> nbad1(0, 0), std::domain_error); // zero sd   BOOST_CHECK_THROW(boost::math::normal_distribution<RealType> nbad1(0, -1), std::domain_error); // negative sd  // Tests on extreme values of random variate x, if has numeric_limit infinity etc.    normal_distribution<RealType> N01;  if(std::numeric_limits<RealType>::has_infinity)  {    BOOST_CHECK_EQUAL(pdf(N01, +std::numeric_limits<RealType>::infinity()), 0); // x = + infinity, pdf = 0    BOOST_CHECK_EQUAL(pdf(N01, -std::numeric_limits<RealType>::infinity()), 0); // x = - infinity, pdf = 0    BOOST_CHECK_EQUAL(cdf(N01, +std::numeric_limits<RealType>::infinity()), 1); // x = + infinity, cdf = 1    BOOST_CHECK_EQUAL(cdf(N01, -std::numeric_limits<RealType>::infinity()), 0); // x = - infinity, cdf = 0    BOOST_CHECK_EQUAL(cdf(complement(N01, +std::numeric_limits<RealType>::infinity())), 0); // x = + infinity, c cdf = 0    BOOST_CHECK_EQUAL(cdf(complement(N01, -std::numeric_limits<RealType>::infinity())), 1); // x = - infinity, c cdf = 1    BOOST_CHECK_THROW(boost::math::normal_distribution<RealType> nbad1(std::numeric_limits<RealType>::infinity(), static_cast<RealType>(1)), std::domain_error); // +infinite mean     BOOST_CHECK_THROW(boost::math::normal_distribution<RealType> nbad1(-std::numeric_limits<RealType>::infinity(),  static_cast<RealType>(1)), std::domain_error); // -infinite mean     BOOST_CHECK_THROW(boost::math::normal_distribution<RealType> nbad1(static_cast<RealType>(0), std::numeric_limits<RealType>::infinity()), std::domain_error); // infinite sd  }  if (std::numeric_limits<RealType>::has_quiet_NaN)  {    // No longer allow x to be NaN, then these tests should throw.    BOOST_CHECK_THROW(pdf(N01, +std::numeric_limits<RealType>::quiet_NaN()), std::domain_error); // x = NaN    BOOST_CHECK_THROW(cdf(N01, +std::numeric_limits<RealType>::quiet_NaN()), std::domain_error); // x = NaN    BOOST_CHECK_THROW(cdf(complement(N01, +std::numeric_limits<RealType>::quiet_NaN())), std::domain_error); // x = + infinity    BOOST_CHECK_THROW(quantile(N01, +std::numeric_limits<RealType>::quiet_NaN()), std::domain_error); // p = + infinity    BOOST_CHECK_THROW(quantile(complement(N01, +std::numeric_limits<RealType>::quiet_NaN())), std::domain_error); // p = + infinity  }   cout << "Tolerance for type " << typeid(RealType).name()  << " is " << tolerance << " %" << endl;   check_normal(      static_cast<RealType>(5),      static_cast<RealType>(2),      static_cast<RealType>(4.8),      static_cast<RealType>(0.46017),      static_cast<RealType>(1 - 0.46017),      tolerance);   check_normal(      static_cast<RealType>(5),      static_cast<RealType>(2),      static_cast<RealType>(5.2),      static_cast<RealType>(1 - 0.46017),      static_cast<RealType>(0.46017),      tolerance);   check_normal(      static_cast<RealType>(5),      static_cast<RealType>(2),      static_cast<RealType>(2.2),      static_cast<RealType>(0.08076),      static_cast<RealType>(1 - 0.08076),      tolerance);   check_normal(      static_cast<RealType>(5),      static_cast<RealType>(2),      static_cast<RealType>(7.8),      static_cast<RealType>(1 - 0.08076),      static_cast<RealType>(0.08076),      tolerance);   check_normal(      static_cast<RealType>(-3),      static_cast<RealType>(5),      static_cast<RealType>(-4.5),      static_cast<RealType>(0.38209),      static_cast<RealType>(1 - 0.38209),      tolerance);   check_normal(      static_cast<RealType>(-3),      static_cast<RealType>(5),      static_cast<RealType>(-1.5),      static_cast<RealType>(1 - 0.38209),      static_cast<RealType>(0.38209),      tolerance);   check_normal(      static_cast<RealType>(-3),      static_cast<RealType>(5),      static_cast<RealType>(-8.5),      static_cast<RealType>(0.13567),      static_cast<RealType>(1 - 0.13567),      tolerance);   check_normal(      static_cast<RealType>(-3),      static_cast<RealType>(5),      static_cast<RealType>(2.5),      static_cast<RealType>(1 - 0.13567),      static_cast<RealType>(0.13567),      tolerance);   //   // Tests for PDF: we know that the peak value is at 1/sqrt(2*pi)   //   tolerance = boost::math::tools::epsilon<RealType>() * 5 * 100; // 5 eps as a percentage   BOOST_CHECK_CLOSE(      pdf(normal_distribution<RealType>(), static_cast<RealType>(0)),      static_cast<RealType>(0.3989422804014326779399460599343818684759L), // 1/sqrt(2*pi)      tolerance);   BOOST_CHECK_CLOSE(      pdf(normal_distribution<RealType>(3), static_cast<RealType>(3)),      static_cast<RealType>(0.3989422804014326779399460599343818684759L),      tolerance);   BOOST_CHECK_CLOSE(      pdf(normal_distribution<RealType>(3, 5), static_cast<RealType>(3)),      static_cast<RealType>(0.3989422804014326779399460599343818684759L / 5),      tolerance);   //   // Spot checks for mean = -5, sd = 6:   //   for(RealType x = -15; x < 5; x += 0.125)   {      BOOST_CHECK_CLOSE(         pdf(normal_distribution<RealType>(-5, 6), x),         NaivePDF(RealType(-5), RealType(6), x),         tolerance);   }    RealType tol2 = boost::math::tools::epsilon<RealType>() * 5;    normal_distribution<RealType> dist(8, 3);    RealType x = static_cast<RealType>(0.125);    using namespace std; // ADL of std names.    // mean:    BOOST_CHECK_CLOSE(       mean(dist)       , static_cast<RealType>(8), tol2);    // variance:    BOOST_CHECK_CLOSE(       variance(dist)       , static_cast<RealType>(9), tol2);    // std deviation:    BOOST_CHECK_CLOSE(       standard_deviation(dist)       , static_cast<RealType>(3), tol2);    // hazard:    BOOST_CHECK_CLOSE(       hazard(dist, x)       , pdf(dist, x) / cdf(complement(dist, x)), tol2);    // cumulative hazard:    BOOST_CHECK_CLOSE(       chf(dist, x)       , -log(cdf(complement(dist, x))), tol2);    // coefficient_of_variation:    BOOST_CHECK_CLOSE(       coefficient_of_variation(dist)       , standard_deviation(dist) / mean(dist), tol2);    // mode:    BOOST_CHECK_CLOSE(       mode(dist)       , static_cast<RealType>(8), tol2);    BOOST_CHECK_CLOSE(       median(dist)       , static_cast<RealType>(8), tol2);    // skewness:    BOOST_CHECK_CLOSE(       skewness(dist)       , static_cast<RealType>(0), tol2);    // kertosis:    BOOST_CHECK_CLOSE(       kurtosis(dist)       , static_cast<RealType>(3), tol2);    // kertosis excess:    BOOST_CHECK_CLOSE(       kurtosis_excess(dist)       , static_cast<RealType>(0), tol2);    normal_distribution<RealType> norm01(0, 1); // Test default (0, 1)    BOOST_CHECK_CLOSE(       mean(norm01),       static_cast<RealType>(0), 0); // Mean == zero    normal_distribution<RealType> defsd_norm01(0); // Test default (0, sd = 1)    BOOST_CHECK_CLOSE(       mean(defsd_norm01),       static_cast<RealType>(0), 0); // Mean == zero    normal_distribution<RealType> def_norm01; // Test default (0, sd = 1)    BOOST_CHECK_CLOSE(       mean(def_norm01),       static_cast<RealType>(0), 0); // Mean == zero    BOOST_CHECK_CLOSE(       standard_deviation(def_norm01),       static_cast<RealType>(1), 0); // Mean == zero} // template <class RealType>void test_spots(RealType)int test_main(int, char* []){    // Check that can generate normal distribution using the two convenience methods:   boost::math::normal myf1(1., 2); // Using typedef   normal_distribution<> myf2(1., 2); // Using default RealType double.  boost::math::normal myn01; // Use default values.  // Note NOT myn01() as the compiler will interpret as a function!  // Check the synonyms, provided to allow generic use of find_location and find_scale.  BOOST_CHECK_EQUAL(myn01.mean(), myn01.location());  BOOST_CHECK_EQUAL(myn01.standard_deviation(), myn01.scale());    // Basic sanity-check spot values.   // (Parameter value, arbitrarily zero, only communicates the floating point type).  test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 %  test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 %#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS  test_spots(0.0L); // Test long double.#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x0582))  test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.#endif#else   std::cout << "<note>The long double tests have been disabled on this platform "      "either because the long double overloads of the usual math functions are "      "not available at all, or because they are too inaccurate for these tests "      "to pass.</note>" << std::cout;#endif   return 0;} // int test_main(int, char* [])/*Output:Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_normal.exe"Running 1 test case...Tolerance for type float is 0.01 %Tolerance for type double is 0.01 %Tolerance for type long double is 0.01 %Tolerance for type class boost::math::concepts::real_concept is 0.01 %*** No errors detected*/

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -