📄 test_factorials.cpp
字号:
// Copyright John Maddock 2006.// Use, modification and distribution are subject to the// Boost Software License, Version 1.0. (See accompanying file// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)#ifdef _MSC_VER# pragma warning(disable: 4127) // conditional expression is constant.# pragma warning(disable: 4245) // int/unsigned int conversion#endif// Return infinities not exceptions:#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error#include <boost/math/concepts/real_concept.hpp>#include <boost/test/included/test_exec_monitor.hpp>#include <boost/test/floating_point_comparison.hpp>#include <boost/math/special_functions/factorials.hpp>#include <boost/math/special_functions/gamma.hpp>#include <boost/math/tools/stats.hpp>#include <boost/math/tools/test.hpp>#include <iostream> using std::cout; using std::endl;template <class T>T naive_falling_factorial(T x, unsigned n){ if(n == 0) return 1; T result = x; while(--n) { x -= 1; result *= x; } return result;}template <class T>void test_spots(T){ // // Basic sanity checks. // T tolerance = boost::math::tools::epsilon<T>() * 100 * 2; // 2 eps as a percent. BOOST_CHECK_CLOSE( ::boost::math::factorial<T>(0), static_cast<T>(1), tolerance); BOOST_CHECK_CLOSE( ::boost::math::factorial<T>(1), static_cast<T>(1), tolerance); BOOST_CHECK_CLOSE( ::boost::math::factorial<T>(10), static_cast<T>(3628800L), tolerance); BOOST_CHECK_CLOSE( ::boost::math::unchecked_factorial<T>(0), static_cast<T>(1), tolerance); BOOST_CHECK_CLOSE( ::boost::math::unchecked_factorial<T>(1), static_cast<T>(1), tolerance); BOOST_CHECK_CLOSE( ::boost::math::unchecked_factorial<T>(10), static_cast<T>(3628800L), tolerance); // // Try some double factorials: // BOOST_CHECK_CLOSE( ::boost::math::double_factorial<T>(0), static_cast<T>(1), tolerance); BOOST_CHECK_CLOSE( ::boost::math::double_factorial<T>(1), static_cast<T>(1), tolerance); BOOST_CHECK_CLOSE( ::boost::math::double_factorial<T>(2), static_cast<T>(2), tolerance); BOOST_CHECK_CLOSE( ::boost::math::double_factorial<T>(5), static_cast<T>(15), tolerance); BOOST_CHECK_CLOSE( ::boost::math::double_factorial<T>(10), static_cast<T>(3840), tolerance); BOOST_CHECK_CLOSE( ::boost::math::double_factorial<T>(19), static_cast<T>(6.547290750e8L), tolerance); BOOST_CHECK_CLOSE( ::boost::math::double_factorial<T>(24), static_cast<T>(1.961990553600000e12L), tolerance); BOOST_CHECK_CLOSE( ::boost::math::double_factorial<T>(33), static_cast<T>(6.33265987076285062500000e18L), tolerance); BOOST_CHECK_CLOSE( ::boost::math::double_factorial<T>(42), static_cast<T>(1.0714547155728479551488000000e26L), tolerance); BOOST_CHECK_CLOSE( ::boost::math::double_factorial<T>(47), static_cast<T>(1.19256819277443412353990764062500000e30L), tolerance); if((std::numeric_limits<T>::has_infinity) && (std::numeric_limits<T>::max_exponent <= 1024)) { BOOST_CHECK_EQUAL( ::boost::math::double_factorial<T>(320), std::numeric_limits<T>::infinity()); BOOST_CHECK_EQUAL( ::boost::math::double_factorial<T>(301), std::numeric_limits<T>::infinity()); } // // Rising factorials: // tolerance = boost::math::tools::epsilon<T>() * 100 * 20; // 20 eps as a percent. if(std::numeric_limits<T>::is_specialized == 0) tolerance *= 5; // higher error rates without Lanczos support BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(3), 4), static_cast<T>(360), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(7), -4), static_cast<T>(0.00277777777777777777777777777777777777777777777777777777777778L), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(120.5f), 8), static_cast<T>(5.58187566784927180664062500e16L), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(120.5f), -4), static_cast<T>(5.15881498170104646868208445266116850161120996179812063177241e-9L), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(5000.25f), 8), static_cast<T>(3.92974581976666067544013393509103775024414062500000e29L), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(5000.25f), -7), static_cast<T>(1.28674092710208810281923019294164707555099052561945725535047e-26L), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(30.25), 21), static_cast<T>(3.93286957998925490693364184100209193343633629069699964020401e33L), tolerance * 2); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(30.25), -21), static_cast<T>(3.35010902064291983728782493133164809108646650368560147505884e-27L), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(-30.25), 21), static_cast<T>(-9.76168312768123676601980433377916854311706629232503473758698e26L), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(-30.25), -21), static_cast<T>(-1.50079704000923674318934280259377728203516775215430875839823e-34L), 2 * tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(-30.25), 5), static_cast<T>(-1.78799177197265625000000e7L), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(-30.25), -5), static_cast<T>(-2.47177487004482195012362027432181137141899692171397467859150e-8L), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(-30.25), 6), static_cast<T>(4.5146792242309570312500000e8L), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(-30.25), -6), static_cast<T>(6.81868929667537089689274558433603136943171564610751635473516e-10L), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(-3), 6), static_cast<T>(0), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(-3.25), 6), static_cast<T>(2.99926757812500L), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(-5.25), 6), static_cast<T>(50.987548828125000000000000L), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(-5.25), 13), static_cast<T>(127230.91046623885631561279296875000L), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(-3.25), -6), static_cast<T>(0.0000129609865918182348202632178291407500332449622510474437452125L), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(-5.25), -6), static_cast<T>(2.50789821857946332294524052303699065683926911849535903362649e-6L), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(-5.25), -13), static_cast<T>(-1.38984989447269128946284683518361786049649013886981662962096e-14L), tolerance); // // Falling factorials: // BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(30.25), 0), static_cast<T>(naive_falling_factorial(30.25L, 0)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(30.25), 1), static_cast<T>(naive_falling_factorial(30.25L, 1)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(30.25), 2), static_cast<T>(naive_falling_factorial(30.25L, 2)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(30.25), 5), static_cast<T>(naive_falling_factorial(30.25L, 5)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(30.25), 22), static_cast<T>(naive_falling_factorial(30.25L, 22)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(100.5), 6), static_cast<T>(naive_falling_factorial(100.5L, 6)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(30.75), 30), static_cast<T>(naive_falling_factorial(30.75L, 30)), tolerance * 3); if(boost::math::policies::digits<T, boost::math::policies::policy<> >() > 50) { BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(-30.75L), 30), static_cast<T>(naive_falling_factorial(-30.75L, 30)), tolerance * 3); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(-30.75L), 27), static_cast<T>(naive_falling_factorial(-30.75L, 27)), tolerance * 3); } BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(-12.0), 6), static_cast<T>(naive_falling_factorial(-12.0L, 6)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(-12), 5), static_cast<T>(naive_falling_factorial(-12.0L, 5)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(-3.0), 6), static_cast<T>(naive_falling_factorial(-3.0L, 6)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(-3), 5), static_cast<T>(naive_falling_factorial(-3.0L, 5)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(3.0), 6), static_cast<T>(naive_falling_factorial(3.0L, 6)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(3), 5), static_cast<T>(naive_falling_factorial(3.0L, 5)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(3.25), 4), static_cast<T>(naive_falling_factorial(3.25L, 4)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(3.25), 5), static_cast<T>(naive_falling_factorial(3.25L, 5)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(3.25), 6), static_cast<T>(naive_falling_factorial(3.25L, 6)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(3.25), 7), static_cast<T>(naive_falling_factorial(3.25L, 7)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(8.25), 12), static_cast<T>(naive_falling_factorial(8.25L, 12)), tolerance); tolerance = boost::math::tools::epsilon<T>() * 100 * 20; // 20 eps as a percent. unsigned i = boost::math::max_factorial<T>::value; if((boost::is_floating_point<T>::value) && (sizeof(T) <= sizeof(double))) { // Without Lanczos support, tgamma isn't accurate enough for this test: BOOST_CHECK_CLOSE( ::boost::math::unchecked_factorial<T>(i), boost::math::tgamma(static_cast<T>(i+1)), tolerance); } i += 10; while(boost::math::lgamma(static_cast<T>(i+1)) < boost::math::tools::log_max_value<T>()) { BOOST_CHECK_CLOSE( ::boost::math::factorial<T>(i), boost::math::tgamma(static_cast<T>(i+1)), tolerance); i += 10; }} // template <class T> void test_spots(T)int test_main(int, char* []){ BOOST_MATH_CONTROL_FP; test_spots(0.0F); test_spots(0.0);#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS test_spots(0.0L);#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS test_spots(boost::math::concepts::real_concept(0.));#endif#else std::cout << "<note>The long double tests have been disabled on this platform " "either because the long double overloads of the usual math functions are " "not available at all, or because they are too inaccurate for these tests " "to pass.</note>" << std::cout;#endif if (std::numeric_limits<double>::digits == std::numeric_limits<long double>::digits) { cout << "Types double and long double have the same number of floating-point significand bits (" << std::numeric_limits<long double>::digits << ") on this platform." << endl; } if (std::numeric_limits<float>::digits == std::numeric_limits<double>::digits) { cout << "Types float and double have the same number of floating-point significand bits (" << std::numeric_limits<double>::digits << ") on this platform." << endl; } using boost::math::max_factorial; cout << "max factorial for float " << max_factorial<float>::value << endl; cout << "max factorial for double " << max_factorial<double>::value << endl; cout << "max factorial for long double " << max_factorial<long double>::value << endl; cout << "max factorial for real_concept " << max_factorial<boost::math::concepts::real_concept>::value << endl; return 0;}/*Output is:Running 1 test case...Types double and long double have the same number of floating-point significand bits (53) on this platform.max factorial for float 34max factorial for double 170max factorial for long double 170max factorial for real_concept 100*** No errors detected*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -