⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 test_roots.cpp

📁 Boost provides free peer-reviewed portable C++ source libraries. We emphasize libraries that work
💻 CPP
字号:
//  (C) Copyright John Maddock 2006.//  Use, modification and distribution are subject to the//  Boost Software License, Version 1.0. (See accompanying file//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)#include <boost/test/included/test_exec_monitor.hpp>#include <boost/test/floating_point_comparison.hpp>#include <boost/test/results_collector.hpp>#include <boost/math/special_functions/beta.hpp>#include <boost/math/tools/roots.hpp>#include <boost/array.hpp>#define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \   {\      unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\      BOOST_CHECK_CLOSE(a, b, prec); \      if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\      {\         std::cerr << "Failure was at row " << i << std::endl;\         std::cerr << std::setprecision(35); \         std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\         std::cerr << " , " << data[i][3] << " , " << data[i][4] << " , " << data[i][5] << " } " << std::endl;\      }\   }//// Implement various versions of inverse of the incomplete beta// using different root finding algorithms, and deliberately "bad"// starting conditions: that way we get all the pathological cases// we could ever wish for!!!//template <class T, class Policy>struct ibeta_roots_1   // for first order algorithms{   ibeta_roots_1(T _a, T _b, T t, bool inv = false)      : a(_a), b(_b), target(t), invert(inv) {}   T operator()(const T& x)   {      return boost::math::detail::ibeta_imp(a, b, x, Policy(), invert, true) - target;   }private:   T a, b, target;   bool invert;};template <class T, class Policy>struct ibeta_roots_2   // for second order algorithms{   ibeta_roots_2(T _a, T _b, T t, bool inv = false)      : a(_a), b(_b), target(t), invert(inv) {}   std::tr1::tuple<T, T> operator()(const T& x)   {      typedef typename boost::math::lanczos::lanczos<T, Policy>::type L;      T f = boost::math::detail::ibeta_imp(a, b, x, Policy(), invert, true) - target;      T f1 = invert ?         -boost::math::detail::ibeta_power_terms(b, a, 1 - x, x, L(), true, Policy())               : boost::math::detail::ibeta_power_terms(a, b, x, 1 - x, L(), true, Policy());      T y = 1 - x;      if(y == 0)         y = boost::math::tools::min_value<T>() * 8;      f1 /= y * x;      // make sure we don't have a zero derivative:      if(f1 == 0)         f1 = (invert ? -1 : 1) * boost::math::tools::min_value<T>() * 64;      return std::tr1::make_tuple(f, f1);   }private:   T a, b, target;   bool invert;};template <class T, class Policy>struct ibeta_roots_3   // for third order algorithms{   ibeta_roots_3(T _a, T _b, T t, bool inv = false)      : a(_a), b(_b), target(t), invert(inv) {}   std::tr1::tuple<T, T, T> operator()(const T& x)   {      typedef typename boost::math::lanczos::lanczos<T, Policy>::type L;      T f = boost::math::detail::ibeta_imp(a, b, x, Policy(), invert, true) - target;      T f1 = invert ?               -boost::math::detail::ibeta_power_terms(b, a, 1 - x, x, L(), true, Policy())               : boost::math::detail::ibeta_power_terms(a, b, x, 1 - x, L(), true, Policy());      T y = 1 - x;      if(y == 0)         y = boost::math::tools::min_value<T>() * 8;      f1 /= y * x;      T f2 = f1 * (-y * a + (b - 2) * x + 1) / (y * x);      if(invert)         f2 = -f2;      // make sure we don't have a zero derivative:      if(f1 == 0)         f1 = (invert ? -1 : 1) * boost::math::tools::min_value<T>() * 64;      return std::tr1::make_tuple(f, f1, f2);   }private:   T a, b, target;   bool invert;};double inverse_ibeta_bisect(double a, double b, double z){   typedef boost::math::policies::policy<> pol;   bool invert = false;   int bits = std::numeric_limits<double>::digits;   //   // special cases, we need to have these because there may be other   // possible answers:   //   if(z == 1) return 1;   if(z == 0) return 0;   //   // We need a good estimate of the error in the incomplete beta function   // so that we don't set the desired precision too high.  Assume that 3-bits   // are lost each time the arguments increase by a factor of 10:   //   using namespace std;   int bits_lost = static_cast<int>(ceil(log10((std::max)(a, b)) * 3));   if(bits_lost < 0)      bits_lost = 3;   else      bits_lost += 3;   int precision = bits - bits_lost;   double min = 0;   double max = 1;   boost::math::tools::eps_tolerance<double> tol(precision);   return boost::math::tools::bisect(ibeta_roots_1<double, pol>(a, b, z, invert), min, max, tol).first;}double inverse_ibeta_newton(double a, double b, double z){   double guess = 0.5;   bool invert = false;   int bits = std::numeric_limits<double>::digits;   //   // special cases, we need to have these because there may be other   // possible answers:   //   if(z == 1) return 1;   if(z == 0) return 0;   //   // We need a good estimate of the error in the incomplete beta function   // so that we don't set the desired precision too high.  Assume that 3-bits   // are lost each time the arguments increase by a factor of 10:   //   using namespace std;   int bits_lost = static_cast<int>(ceil(log10((std::max)(a, b)) * 3));   if(bits_lost < 0)      bits_lost = 3;   else      bits_lost += 3;   int precision = bits - bits_lost;   double min = 0;   double max = 1;   return boost::math::tools::newton_raphson_iterate(ibeta_roots_2<double, boost::math::policies::policy<> >(a, b, z, invert), guess, min, max, precision);}double inverse_ibeta_halley(double a, double b, double z){   double guess = 0.5;   bool invert = false;   int bits = std::numeric_limits<double>::digits;   //   // special cases, we need to have these because there may be other   // possible answers:   //   if(z == 1) return 1;   if(z == 0) return 0;   //   // We need a good estimate of the error in the incomplete beta function   // so that we don't set the desired precision too high.  Assume that 3-bits   // are lost each time the arguments increase by a factor of 10:   //   using namespace std;   int bits_lost = static_cast<int>(ceil(log10((std::max)(a, b)) * 3));   if(bits_lost < 0)      bits_lost = 3;   else      bits_lost += 3;   int precision = bits - bits_lost;   double min = 0;   double max = 1;   return boost::math::tools::halley_iterate(ibeta_roots_3<double, boost::math::policies::policy<> >(a, b, z, invert), guess, min, max, precision);}double inverse_ibeta_schroeder(double a, double b, double z){   double guess = 0.5;   bool invert = false;   int bits = std::numeric_limits<double>::digits;   //   // special cases, we need to have these because there may be other   // possible answers:   //   if(z == 1) return 1;   if(z == 0) return 0;   //   // We need a good estimate of the error in the incomplete beta function   // so that we don't set the desired precision too high.  Assume that 3-bits   // are lost each time the arguments increase by a factor of 10:   //   using namespace std;   int bits_lost = static_cast<int>(ceil(log10((std::max)(a, b)) * 3));   if(bits_lost < 0)      bits_lost = 3;   else      bits_lost += 3;   int precision = bits - bits_lost;   double min = 0;   double max = 1;   return boost::math::tools::schroeder_iterate(ibeta_roots_3<double, boost::math::policies::policy<> >(a, b, z, invert), guess, min, max, precision);}template <class T>void test_inverses(const T& data){   using namespace std;   typedef typename T::value_type row_type;   typedef typename row_type::value_type value_type;   value_type precision = static_cast<value_type>(ldexp(1.0, 1-boost::math::policies::digits<value_type, boost::math::policies::policy<> >()/2)) * 100;   if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50)      precision = 1;   // 1% or two decimal digits, all we can hope for when the input is truncated   for(unsigned i = 0; i < data.size(); ++i)   {      //      // These inverse tests are thrown off if the output of the      // incomplete beta is too close to 1: basically there is insuffient      // information left in the value we're using as input to the inverse      // to be able to get back to the original value.      //      if(data[i][5] == 0)      {         BOOST_CHECK_EQUAL(inverse_ibeta_halley(data[i][0], data[i][1], data[i][5]), value_type(0));         BOOST_CHECK_EQUAL(inverse_ibeta_schroeder(data[i][0], data[i][1], data[i][5]), value_type(0));         BOOST_CHECK_EQUAL(inverse_ibeta_newton(data[i][0], data[i][1], data[i][5]), value_type(0));         BOOST_CHECK_EQUAL(inverse_ibeta_bisect(data[i][0], data[i][1], data[i][5]), value_type(0));      }      else if((1 - data[i][5] > 0.001)          && (fabs(data[i][5]) > 2 * boost::math::tools::min_value<value_type>())          && (fabs(data[i][5]) > 2 * boost::math::tools::min_value<double>()))      {         value_type inv = inverse_ibeta_halley(data[i][0], data[i][1], data[i][5]);         BOOST_CHECK_CLOSE_EX(data[i][2], inv, precision, i);         inv = inverse_ibeta_schroeder(data[i][0], data[i][1], data[i][5]);         BOOST_CHECK_CLOSE_EX(data[i][2], inv, precision, i);         inv = inverse_ibeta_newton(data[i][0], data[i][1], data[i][5]);         BOOST_CHECK_CLOSE_EX(data[i][2], inv, precision, i);         inv = inverse_ibeta_bisect(data[i][0], data[i][1], data[i][5]);         BOOST_CHECK_CLOSE_EX(data[i][2], inv, precision, i);      }      else if(1 == data[i][5])      {         BOOST_CHECK_EQUAL(inverse_ibeta_halley(data[i][0], data[i][1], data[i][5]), value_type(1));         BOOST_CHECK_EQUAL(inverse_ibeta_schroeder(data[i][0], data[i][1], data[i][5]), value_type(1));         BOOST_CHECK_EQUAL(inverse_ibeta_newton(data[i][0], data[i][1], data[i][5]), value_type(1));         BOOST_CHECK_EQUAL(inverse_ibeta_bisect(data[i][0], data[i][1], data[i][5]), value_type(1));      }   }}template <class T>void test_beta(T, const char* /* name */){   //   // The actual test data is rather verbose, so it's in a separate file   //   // The contents are as follows, each row of data contains   // five items, input value a, input value b, integration limits x, beta(a, b, x) and ibeta(a, b, x):   //#  include "ibeta_small_data.ipp"   test_inverses(ibeta_small_data);#  include "ibeta_data.ipp"   test_inverses(ibeta_data);#  include "ibeta_large_data.ipp"   test_inverses(ibeta_large_data);}int test_main(int, char* []){   test_beta(0.1, "double");   return 0;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -