📄 test_ellint_1.cpp
字号:
// Copyright Xiaogang Zhang 2006// Copyright John Maddock 2006, 2007// Copyright Paul A. Bristow 2007// Use, modification and distribution are subject to the// Boost Software License, Version 1.0. (See accompanying file// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)#ifdef _MSC_VER# pragma warning(disable : 4756) // overflow in constant arithmetic// Constants are too big for float case, but this doesn't matter for test.#endif#include <boost/math/concepts/real_concept.hpp>#include <boost/test/included/test_exec_monitor.hpp>#include <boost/test/floating_point_comparison.hpp>#include <boost/math/special_functions/ellint_1.hpp>#include <boost/array.hpp>#include "functor.hpp"#include "handle_test_result.hpp"//// DESCRIPTION:// ~~~~~~~~~~~~//// This file tests the Elliptic Integrals of the first kind.// There are two sets of tests, spot// tests which compare our results with selected values computed// using the online special function calculator at// functions.wolfram.com, while the bulk of the accuracy tests// use values generated with NTL::RR at 1000-bit precision// and our generic versions of these functions.//// Note that when this file is first run on a new platform many of// these tests will fail: the default accuracy is 1 epsilon which// is too tight for most platforms. In this situation you will// need to cast a human eye over the error rates reported and make// a judgement as to whether they are acceptable. Either way please// report the results to the Boost mailing list. Acceptable rates of// error are marked up below as a series of regular expressions that// identify the compiler/stdlib/platform/data-type/test-data/test-function// along with the maximum expected peek and RMS mean errors for that// test.//void expected_results(){ // // Define the max and mean errors expected for // various compilers and platforms. // const char* largest_type;#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS if(boost::math::policies::digits<double, boost::math::policies::policy<> >() == boost::math::policies::digits<long double, boost::math::policies::policy<> >()) { largest_type = "(long\\s+)?double"; } else { largest_type = "long double"; }#else largest_type = "(long\\s+)?double";#endif // // Catch all cases come last: // add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform largest_type, // test type(s) ".*", // test data group ".*", 5, 3); // test function add_expected_result( ".*", // compiler ".*", // stdlib ".*", // platform "real_concept", // test type(s) ".*", // test data group ".*", 5, 3); // test function // // Finish off by printing out the compiler/stdlib/platform names, // we do this to make it easier to mark up expected error rates. // std::cout << "Tests run with " << BOOST_COMPILER << ", " << BOOST_STDLIB << ", " << BOOST_PLATFORM << std::endl;}template <typename T>void do_test_ellint_f(T& data, const char* type_name, const char* test){ typedef typename T::value_type row_type; typedef typename row_type::value_type value_type; std::cout << "Testing: " << test << std::endl;#if defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS) value_type (*fp2)(value_type, value_type) = boost::math::ellint_1<value_type, value_type>;#else value_type (*fp2)(value_type, value_type) = boost::math::ellint_1;#endif boost::math::tools::test_result<value_type> result; result = boost::math::tools::test( data, bind_func(fp2, 1, 0), extract_result(2)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::ellint_1", test); std::cout << std::endl;}template <typename T>void do_test_ellint_k(T& data, const char* type_name, const char* test){ typedef typename T::value_type row_type; typedef typename row_type::value_type value_type; boost::math::tools::test_result<value_type> result; std::cout << "Testing: " << test << std::endl;#if defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS) value_type (*fp1)(value_type) = boost::math::ellint_1<value_type>;#else value_type (*fp1)(value_type) = boost::math::ellint_1;#endif result = boost::math::tools::test( data, bind_func(fp1, 0), extract_result(1)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::ellint_1", test); std::cout << std::endl;}template <typename T>void test_spots(T, const char* type_name){ // Function values calculated on http://functions.wolfram.com/ // Note that Mathematica's EllipticF accepts k^2 as the second parameter. #define SC_(x) static_cast<T>(BOOST_JOIN(x, L)) static const boost::array<boost::array<T, 3>, 19> data1 = { SC_(0), SC_(0), SC_(0), SC_(-10), SC_(0), SC_(-10), SC_(-1), SC_(-1), SC_(-1.2261911708835170708130609674719067527242483502207), SC_(-4), SC_(0.875), SC_(-5.3190556182262405182189463092940736859067548232647), SC_(8), SC_(-0.625), SC_(9.0419973860310100524448893214394562615252527557062), SC_(1e-05), SC_(0.875), SC_(0.000010000000000127604166668510945638036143355898993088), SC_(1e+05), SC_(10)/1024, SC_(100002.38431454899771096037307519328741455615271038), SC_(1e-20), SC_(1), SC_(1.0000000000000000000000000000000000000000166666667e-20), SC_(1e-20), SC_(1e-20), SC_(1.000000000000000e-20), SC_(1e+20), SC_(400)/1024, SC_(1.0418143796499216839719289963154558027005142709763e20), SC_(1e+50), SC_(0.875), SC_(1.3913251718238765549409892714295358043696028445944e50), SC_(2), SC_(0.5), SC_(2.1765877052210673672479877957388515321497888026770), SC_(4), SC_(0.5), SC_(4.2543274975235836861894752787874633017836785640477), SC_(6), SC_(0.5), SC_(6.4588766202317746302999080620490579800463614807916), SC_(10), SC_(0.5), SC_(10.697409951222544858346795279378531495869386960090), SC_(-2), SC_(0.5), SC_(-2.1765877052210673672479877957388515321497888026770), SC_(-4), SC_(0.5), SC_(-4.2543274975235836861894752787874633017836785640477), SC_(-6), SC_(0.5), SC_(-6.4588766202317746302999080620490579800463614807916), SC_(-10), SC_(0.5), SC_(-10.697409951222544858346795279378531495869386960090), }; #undef SC_ do_test_ellint_f(data1, type_name, "Elliptic Integral F: Mathworld Data");#include "ellint_f_data.ipp" do_test_ellint_f(ellint_f_data, type_name, "Elliptic Integral F: Random Data"); // Function values calculated on http://functions.wolfram.com/ // Note that Mathematica's EllipticK accepts k^2 as the second parameter. #define SC_(x) static_cast<T>(BOOST_JOIN(x, L)) static const boost::array<boost::array<T, 2>, 9> data2 = { SC_(0), SC_(1.5707963267948966192313216916397514420985846996876), SC_(0.125), SC_(1.5769867712158131421244030532288080803822271060839), SC_(0.25), SC_(1.5962422221317835101489690714979498795055744578951), SC_(300)/1024, SC_(1.6062331054696636704261124078746600894998873503208), SC_(400)/1024, SC_(1.6364782007562008756208066125715722889067992997614), SC_(-0.5), SC_(1.6857503548125960428712036577990769895008008941411), SC_(-0.75), SC_(1.9109897807518291965531482187613425592531451316788), 1-SC_(1)/8, SC_(2.185488469278223686913080323730158689730428415766), 1-SC_(1)/1024, SC_(4.5074135978990422666372495313621124487894807327687), }; #undef SC_ do_test_ellint_k(data2, type_name, "Elliptic Integral K: Mathworld Data");#include "ellint_k_data.ipp" do_test_ellint_k(ellint_k_data, type_name, "Elliptic Integral K: Random Data");}int test_main(int, char* []){ expected_results(); BOOST_MATH_CONTROL_FP; test_spots(0.0F, "float"); test_spots(0.0, "double");#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS test_spots(0.0L, "long double");#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS test_spots(boost::math::concepts::real_concept(0), "real_concept");#endif#else std::cout << "<note>The long double tests have been disabled on this platform " "either because the long double overloads of the usual math functions are " "not available at all, or because they are too inaccurate for these tests " "to pass.</note>" << std::cout;#endif return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -