📄 test_triangular.cpp
字号:
// Note that infinity is not implemented for real_concept, so these tests // are only done for types, like built-in float, double.. that have infinity. // Note that these assume that BOOST_MATH_OVERFLOW_ERROR_POLICY is NOT throw_on_error. // #define BOOST_MATH_OVERFLOW_ERROR_POLICY == throw_on_error would give a throw here. // #define BOOST_MATH_DOMAIN_ERROR_POLICY == throw_on_error IS defined, so the throw path // of error handling is tested below with BOOST_CHECK_THROW tests. using boost::math::policies::policy; using boost::math::policies::domain_error; using boost::math::policies::ignore_error; // Define a (bad?) policy to ignore domain errors ('bad' arguments): typedef policy<domain_error<ignore_error> > inf_policy; // domain error returns infinity. triangular_distribution<RealType, inf_policy> tridef_inf(-1, 0., 1); // But can't use BOOST_CHECK_EQUAL(?, quiet_NaN) using boost::math::isnan; BOOST_CHECK((isnan)(pdf(tridef_inf, std::numeric_limits<RealType>::infinity()))); } // test for infinity using std::numeric_limits<>::infinity() else { // real_concept case, does has_infinfity == false, so can't check it throws. // cout << std::numeric_limits<RealType>::infinity() << ' ' // << boost::math::fpclassify(std::numeric_limits<RealType>::infinity()) << endl; // value of std::numeric_limits<RealType>::infinity() is zero, so FPclassify is zero, // so (boost::math::isfinite)(std::numeric_limits<RealType>::infinity()) does not detect infinity. // so these tests would never throw. //BOOST_CHECK_THROW(pdf(tridef, std::numeric_limits<RealType>::infinity()), std::domain_error); //BOOST_CHECK_THROW(pdf(tridef, std::numeric_limits<RealType>::quiet_NaN()), std::domain_error); // BOOST_CHECK_THROW(pdf(tridef, boost::math::tools::max_value<RealType>() * 2), std::domain_error); // Doesn't throw. BOOST_CHECK_EQUAL(pdf(tridef, boost::math::tools::max_value<RealType>()), 0); } // Special cases: BOOST_CHECK(pdf(tridef, -1) == 0); BOOST_CHECK(pdf(tridef, 1) == 0); BOOST_CHECK(cdf(tridef, 0) == 0.5); BOOST_CHECK(pdf(tridef, 1) == 0); BOOST_CHECK(cdf(tridef, 1) == 1); BOOST_CHECK(cdf(complement(tridef, -1)) == 1); BOOST_CHECK(cdf(complement(tridef, 1)) == 0); BOOST_CHECK(quantile(tridef, 1) == 1); BOOST_CHECK(quantile(complement(tridef, 1)) == -1); BOOST_CHECK_EQUAL(support(trim12).first, trim12.lower()); BOOST_CHECK_EQUAL(support(trim12).second, trim12.upper()); // Error checks: if(std::numeric_limits<RealType>::has_quiet_NaN) { // BOOST_CHECK tests for quiet_NaN (not for real_concept, for example - see notes above). BOOST_CHECK_THROW(triangular_distribution<RealType>(0, std::numeric_limits<RealType>::quiet_NaN()), std::domain_error); BOOST_CHECK_THROW(triangular_distribution<RealType>(0, -std::numeric_limits<RealType>::quiet_NaN()), std::domain_error); } BOOST_CHECK_THROW(triangular_distribution<RealType>(1, 0), std::domain_error); // lower > upper!} // template <class RealType>void test_spots(RealType)int test_main(int, char* []){ // double toleps = std::numeric_limits<double>::epsilon(); // 5 eps as a fraction. double tol5eps = std::numeric_limits<double>::epsilon() * 5; // 5 eps as a fraction. // double tol50eps = std::numeric_limits<double>::epsilon() * 50; // 50 eps as a fraction. double tol500eps = std::numeric_limits<double>::epsilon() * 500; // 500 eps as a fraction. // Check that can construct triangular distribution using the two convenience methods: using namespace boost::math; triangular triang; // Using typedef // == triangular_distribution<double> triang; BOOST_CHECK_EQUAL(triang.lower(), -1); // Check default. BOOST_CHECK_EQUAL(triang.mode(), 0); BOOST_CHECK_EQUAL(triang.upper(), 1); triangular tristd (0, 0.5, 1); // Using typedef BOOST_CHECK_EQUAL(tristd.lower(), 0); BOOST_CHECK_EQUAL(tristd.mode(), 0.5); BOOST_CHECK_EQUAL(tristd.upper(), 1); //cout << "X range from " << range(tristd).first << " to " << range(tristd).second << endl; //cout << "Supported from "<< support(tristd).first << ' ' << support(tristd).second << endl; BOOST_CHECK_EQUAL(support(tristd).first, tristd.lower()); BOOST_CHECK_EQUAL(support(tristd).second, tristd.upper()); triangular_distribution<> tri011(0, 1, 1); // Using default RealType double. // mode is upper BOOST_CHECK_EQUAL(tri011.lower(), 0); // Check defaults again. BOOST_CHECK_EQUAL(tri011.mode(), 1); // Check defaults again. BOOST_CHECK_EQUAL(tri011.upper(), 1); BOOST_CHECK_EQUAL(mode(tri011), 1); BOOST_CHECK_EQUAL(pdf(tri011, 0), 0); BOOST_CHECK_EQUAL(pdf(tri011, 0.1), 0.2); BOOST_CHECK_EQUAL(pdf(tri011, 0.5), 1); BOOST_CHECK_EQUAL(pdf(tri011, 0.9), 1.8); BOOST_CHECK_EQUAL(pdf(tri011, 1), 2); BOOST_CHECK_EQUAL(cdf(tri011, 0), 0); BOOST_CHECK_CLOSE_FRACTION(cdf(tri011, 0.1), 0.01, tol5eps); BOOST_CHECK_EQUAL(cdf(tri011, 0.5), 0.25); BOOST_CHECK_EQUAL(cdf(tri011, 0.9), 0.81); BOOST_CHECK_EQUAL(cdf(tri011, 1), 1); BOOST_CHECK_EQUAL(cdf(tri011, 9), 1); BOOST_CHECK_EQUAL(mean(tri011), 0.666666666666666666666666666666666666666666666666667); BOOST_CHECK_EQUAL(variance(tri011), 1./18.); triangular tri0h1(0, 0.5, 1); // Equilateral triangle - mode is the middle. BOOST_CHECK_EQUAL(tri0h1.lower(), 0); BOOST_CHECK_EQUAL(tri0h1.mode(), 0.5); BOOST_CHECK_EQUAL(tri0h1.upper(), 1); BOOST_CHECK_EQUAL(mean(tri0h1), 0.5); BOOST_CHECK_EQUAL(mode(tri0h1), 0.5); BOOST_CHECK_EQUAL(pdf(tri0h1, -1), 0); BOOST_CHECK_EQUAL(cdf(tri0h1, -1), 0); BOOST_CHECK_EQUAL(pdf(tri0h1, 1), 0); BOOST_CHECK_EQUAL(pdf(tri0h1, 999), 0); BOOST_CHECK_EQUAL(cdf(tri0h1, 999), 1); BOOST_CHECK_EQUAL(cdf(tri0h1, 1), 1); BOOST_CHECK_CLOSE_FRACTION(cdf(tri0h1, 0.1), 0.02, tol5eps); BOOST_CHECK_EQUAL(cdf(tri0h1, 0.5), 0.5); BOOST_CHECK_CLOSE_FRACTION(cdf(tri0h1, 0.9), 0.98, tol5eps); BOOST_CHECK_CLOSE_FRACTION(quantile(tri0h1, 0.), 0., tol5eps); BOOST_CHECK_CLOSE_FRACTION(quantile(tri0h1, 0.02), 0.1, tol5eps); BOOST_CHECK_CLOSE_FRACTION(quantile(tri0h1, 0.5), 0.5, tol5eps); BOOST_CHECK_CLOSE_FRACTION(quantile(tri0h1, 0.98), 0.9, tol5eps); BOOST_CHECK_CLOSE_FRACTION(quantile(tri0h1, 1.), 1., tol5eps); triangular tri0q1(0, 0.25, 1); // mode is near bottom. BOOST_CHECK_CLOSE_FRACTION(cdf(tri0q1, 0.02), 0.0016, tol5eps); BOOST_CHECK_CLOSE_FRACTION(cdf(tri0q1, 0.5), 0.66666666666666666666666666666666666666666666667, tol5eps); BOOST_CHECK_CLOSE_FRACTION(cdf(tri0q1, 0.98), 0.99946666666666661, tol5eps); BOOST_CHECK_CLOSE_FRACTION(quantile(tri0q1, 0.0016), 0.02, tol5eps); BOOST_CHECK_CLOSE_FRACTION(quantile(tri0q1, 0.66666666666666666666666666666666666666666666667), 0.5, tol5eps); BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0q1, 0.3333333333333333333333333333333333333333333333333)), 0.5, tol5eps); BOOST_CHECK_CLOSE_FRACTION(quantile(tri0q1, 0.99946666666666661), 0.98, 10 * tol5eps); triangular trim12(-1, -0.5, 2); // mode is negative. BOOST_CHECK_CLOSE_FRACTION(pdf(trim12, 0), 0.533333333333333333333333333333333333333333333, tol5eps); BOOST_CHECK_CLOSE_FRACTION(cdf(trim12, 0), 0.466666666666666666666666666666666666666666667, tol5eps); BOOST_CHECK_CLOSE_FRACTION(cdf(complement(trim12, 0)), 1 - 0.466666666666666666666666666666666666666666667, tol5eps); BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0q1, 1 - 0.99946666666666661)), 0.98, 10 * tol5eps); BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0h1, 1.)), 0., tol5eps); BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0h1, 0.5)), 0.5, tol5eps); // OK BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0h1, 1. - 0.02)), 0.1, tol5eps); BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0h1, 1. - 0.98)), 0.9, tol5eps); BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0h1, 0)), 1., tol5eps); double xs [] = {0., 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.98, 0.99, 1.}; const triangular_distribution<double>& distr = tristd; BOOST_CHECK_CLOSE_FRACTION(quantile(complement(distr, 1.)), 0., tol5eps); const triangular_distribution<double>* distp = &tristd; BOOST_CHECK_CLOSE_FRACTION(quantile(complement(*distp, 1.)), 0., tol5eps); const triangular_distribution<double>* dists [] = {&tristd, &tri011, &tri0q1, &tri0h1, &trim12}; BOOST_CHECK_CLOSE_FRACTION(quantile(complement(*dists[1], 1.)), 0., tol5eps); for (int i = 0; i < 5; i++) { const triangular_distribution<double>* const dist = dists[i]; cout << "Distribution " << i << endl; BOOST_CHECK_EQUAL(quantile(complement(*dists[i], 1.)), quantile(*dists[i], 0.)); BOOST_CHECK_CLOSE_FRACTION(quantile(*dists[i], 0.5), quantile(complement(*dist, 0.5)), tol5eps); // OK BOOST_CHECK_CLOSE_FRACTION(quantile(*dists[i], 0.98), quantile(complement(*dist, 1. - 0.98)),tol5eps); // cout << setprecision(17) << median(*dist) << endl; } cout << showpos << setprecision(2) << endl; //triangular_distribution<double>& dist = trim12; for (unsigned i = 0; i < sizeof(xs) /sizeof(double); i++) { double x = xs[i] * (trim12.upper() - trim12.lower()) + trim12.lower(); double dx = cdf(trim12, x); double cx = cdf(complement(trim12, x)); //cout << fixed << showpos << setprecision(3) // << xs[i] << ", " << x << ", " << pdf(trim12, x) << ", " << dx << ", " << cx << ",, " ; BOOST_CHECK_CLOSE_FRACTION(cx, 1 - dx, tol500eps); // cx == 1 - dx // << setprecision(2) << scientific << cr - x << ", " // difference x - quan(cdf) // << setprecision(3) << fixed // << quantile(trim12, dx) << ", " // << quantile(complement(trim12, 1 - dx)) << ", " // << quantile(complement(trim12, cx)) << ", " // << endl; BOOST_CHECK_CLOSE_FRACTION(quantile(trim12, dx), quantile(complement(trim12, 1 - dx)), tol500eps); } cout << endl; // Basic sanity-check spot values. // (Parameter value, arbitrarily zero, only communicates the floating point type). test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 % test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 % #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS test_spots(0.0L); // Test long double. #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x0582)) test_spots(boost::math::concepts::real_concept(0.)); // Test real concept. #endif #else std::cout << "<note>The long double tests have been disabled on this platform " "either because the long double overloads of the usual math functions are " "not available at all, or because they are too inaccurate for these tests " "to pass.</note>" << std::cout; #endif return 0;} // int test_main(int, char* [])/*Output:Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_triangular.exe"Running 1 test case...Distribution 0Distribution 1Distribution 2Distribution 3Distribution 4Tolerance for type float is 5.96046e-007.Tolerance for type double is 1.11022e-015.Tolerance for type long double is 1.11022e-015.Tolerance for type class boost::math::concepts::real_concept is 1.11022e-015.*** No errors detected*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -