📄 complex_test.cpp
字号:
// (C) Copyright John Maddock 2005.// Use, modification and distribution are subject to the// Boost Software License, Version 1.0. (See accompanying file// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)#include <boost/test/test_tools.hpp>#include <boost/test/included/test_exec_monitor.hpp>#include <boost/test/floating_point_comparison.hpp>#include <boost/type_traits/is_same.hpp>#include <boost/type_traits/is_floating_point.hpp>#include <boost/mpl/if.hpp>#include <boost/static_assert.hpp>#include <boost/math/complex.hpp>#include <iostream>#include <iomanip>#include <cmath>#include <typeinfo>#ifdef BOOST_NO_STDC_NAMESPACEnamespace std{ using ::sqrt; using ::tan; using ::tanh; }#endif#ifndef VERBOSE#undef BOOST_MESSAGE#define BOOST_MESSAGE(x)#endif//// check_complex:// Verifies that expected value "a" and found value "b" have a relative error// less than "max_error" epsilons. Note that relative error is calculated for// the complex number as a whole; this means that the error in the real or // imaginary parts alone can be much higher than max_error when the real and // imaginary parts are of very different magnitudes. This is important, because// the Hull et al analysis of the acos and asin algorithms requires that very small// real/imaginary components can be safely ignored if they are negligible compared// to the other component.//template <class T>bool check_complex(const std::complex<T>& a, const std::complex<T>& b, int max_error){ // // a is the expected value, b is what was actually found, // compute | (a-b)/b | and compare with max_error which is the // multiple of E to permit: // bool result = true; static const std::complex<T> zero(0); static const T eps = std::pow(static_cast<T>(std::numeric_limits<T>::radix), 1 - std::numeric_limits<T>::digits); if(a == zero) { if(b != zero) { if(boost::math::fabs(b) > eps) { result = false; BOOST_ERROR("Expected {0,0} but got: " << b); } else { BOOST_MESSAGE("Expected {0,0} but got: " << b); } } return result; } else if(b == zero) { if(boost::math::fabs(a) > eps) { BOOST_ERROR("Found {0,0} but expected: " << a); return false;; } else { BOOST_MESSAGE("Found {0,0} but expected: " << a); } } T rel = boost::math::fabs((b-a)/b) / eps; if( rel > max_error) { result = false; BOOST_ERROR("Error in result exceeded permitted limit of " << max_error << " (actual relative error was " << rel << "e). Found " << b << " expected " << a); } return result;}//// test_inverse_trig:// This is nothing more than a sanity check, computes trig(atrig(z)) // and compare the result to z. Note that://// atrig(trig(z)) != z//// for certain z because the inverse trig functions are multi-valued, this // essentially rules this out as a testing method. On the other hand://// trig(atrig(z))//// can vary compare to z by an arbitrarily large amount. For one thing we // have no control over the implementation of the trig functions, for another// even if both functions were accurate to 1ulp (as accurate as transcendental// number can get, thanks to the "table makers dilemma"), the errors can still// be arbitrarily large - often the inverse trig functions will map a very large// part of the complex domain into a small output domain, so you can never get// back exactly where you started from. Consequently these tests are no more than// sanity checks (just verifies that signs are correct and so on).//template <class T>void test_inverse_trig(T){ using namespace std; static const T interval = static_cast<T>(2.0L/128.0L); T x, y; std::cout << std::setprecision(std::numeric_limits<T>::digits10+2); for(x = -1; x <= 1; x += interval) { for(y = -1; y <= 1; y += interval) { // acos: std::complex<T> val(x, y), inter, result; inter = boost::math::acos(val); result = cos(inter); if(!check_complex(val, result, 50)) { std::cout << "Error in testing inverse complex cos for type " << typeid(T).name() << std::endl; std::cout << " val= " << val << std::endl; std::cout << " acos(val) = " << inter << std::endl; std::cout << " cos(acos(val)) = " << result << std::endl; } // asin: inter = boost::math::asin(val); result = sin(inter); if(!check_complex(val, result, 5)) { std::cout << "Error in testing inverse complex sin for type " << typeid(T).name() << std::endl; std::cout << " val= " << val << std::endl; std::cout << " asin(val) = " << inter << std::endl; std::cout << " sin(asin(val)) = " << result << std::endl; } } } static const T interval2 = static_cast<T>(3.0L/256.0L); for(x = -3; x <= 3; x += interval2) { for(y = -3; y <= 3; y += interval2) { // asinh: std::complex<T> val(x, y), inter, result; inter = boost::math::asinh(val); result = sinh(inter); if(!check_complex(val, result, 5)) { std::cout << "Error in testing inverse complex sinh for type " << typeid(T).name() << std::endl; std::cout << " val= " << val << std::endl; std::cout << " asinh(val) = " << inter << std::endl; std::cout << " sinh(asinh(val)) = " << result << std::endl; } // acosh: if(!((y == 0) && (x <= 1))) // can't test along the branch cut { inter = boost::math::acosh(val); result = cosh(inter); if(!check_complex(val, result, 60)) { std::cout << "Error in testing inverse complex cosh for type " << typeid(T).name() << std::endl; std::cout << " val= " << val << std::endl; std::cout << " acosh(val) = " << inter << std::endl; std::cout << " cosh(acosh(val)) = " << result << std::endl; } } // // There is a problem in testing atan and atanh: // The inverse functions map a large input range to a much // smaller output range, so at the extremes too rather different // inputs may map to the same output value once rounded to N places. // Consequently tan(atan(z)) can suffer from arbitrarily large errors // even if individually they each have a small error bound. On the other // hand we can't test atan(tan(z)) either because atan is multi-valued, so // round-tripping in this direction isn't always possible. // The following heuristic is designed to make the best of a bad job, // using atan(tan(z)) where possible and tan(atan(z)) when it's not. // static const int tanh_error = 20; if((0 != x) && (0 != y) && ((std::fabs(y) < 1) || (std::fabs(x) < 1))) { // atanh: val = boost::math::atanh(val); inter = tanh(val); result = boost::math::atanh(inter); if(!check_complex(val, result, tanh_error)) { std::cout << "Error in testing inverse complex tanh for type " << typeid(T).name() << std::endl; std::cout << " val= " << val << std::endl; std::cout << " tanh(val) = " << inter << std::endl; std::cout << " atanh(tanh(val)) = " << result << std::endl; } // atan: if(!((x == 0) && (std::fabs(y) == 1))) // we can't test infinities here { val = std::complex<T>(x, y); val = boost::math::atan(val); inter = tan(val); result = boost::math::atan(inter); if(!check_complex(val, result, tanh_error)) { std::cout << "Error in testing inverse complex tan for type " << typeid(T).name() << std::endl; std::cout << " val= " << val << std::endl; std::cout << " tan(val) = " << inter << std::endl; std::cout << " atan(tan(val)) = " << result << std::endl; } } } else { // atanh: inter = boost::math::atanh(val); result = tanh(inter); if(!check_complex(val, result, tanh_error)) { std::cout << "Error in testing inverse complex atanh for type " << typeid(T).name() << std::endl; std::cout << " val= " << val << std::endl; std::cout << " atanh(val) = " << inter << std::endl; std::cout << " tanh(atanh(val)) = " << result << std::endl; } // atan: if(!((x == 0) && (std::fabs(y) == 1))) // we can't test infinities here { inter = boost::math::atan(val); result = tan(inter); if(!check_complex(val, result, tanh_error)) { std::cout << "Error in testing inverse complex atan for type " << typeid(T).name() << std::endl; std::cout << " val= " << val << std::endl; std::cout << " atan(val) = " << inter << std::endl; std::cout << " tan(atan(val)) = " << result << std::endl; } } } } }}//// check_spots:// Various spot values, mostly the C99 special cases (infinites and NAN's).// TODO: add spot checks for the Wolfram spot values.//template <class T>void check_spots(const T&){ typedef std::complex<T> ct; ct result; static const T two = 2.0; T eps = std::pow(two, 1-std::numeric_limits<T>::digits); // numeric_limits<>::epsilon way too small to be useful on Darwin. static const T zero = 0; static const T mzero = -zero; static const T one = 1; static const T pi = static_cast<T>(3.141592653589793238462643383279502884197L); static const T half_pi = static_cast<T>(1.57079632679489661923132169163975144L); static const T quarter_pi = static_cast<T>(0.78539816339744830961566084581987572L); static const T three_quarter_pi = static_cast<T>(2.35619449019234492884698253745962716L); //static const T log_two = static_cast<T>(0.69314718055994530941723212145817657L); T infinity = std::numeric_limits<T>::infinity(); bool test_infinity = std::numeric_limits<T>::has_infinity; T nan = 0; bool test_nan = false;#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564)) // numeric_limits reports that a quiet NaN is present // but an attempt to access it will terminate the program!!!! if(std::numeric_limits<T>::has_quiet_NaN) nan = std::numeric_limits<T>::quiet_NaN(); if(boost::math::detail::test_is_nan(nan)) test_nan = true;#endif#if defined(__DECCXX) && !defined(_IEEE_FP) // Tru64 cxx traps infinities unless the -ieee option is used: test_infinity = false;#endif // // C99 spot tests for acos: // result = boost::math::acos(ct(zero));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -