📄 test_poisson.cpp
字号:
// test_poisson.cpp// Copyright Paul A. Bristow 2007.// Copyright John Maddock 2006.// Use, modification and distribution are subject to the// Boost Software License, Version 1.0.// (See accompanying file LICENSE_1_0.txt// or copy at http://www.boost.org/LICENSE_1_0.txt)// Basic sanity test for Poisson Cumulative Distribution Function.#define BOOST_MATH_DISCRETE_QUANTILE_POLICY real#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)# define TEST_FLOAT# define TEST_DOUBLE# define TEST_LDOUBLE# define TEST_REAL_CONCEPT#endif#ifdef _MSC_VER# pragma warning(disable: 4127) // conditional expression is constant.#endif#include <boost/test/included/test_exec_monitor.hpp> // Boost.Test#include <boost/test/floating_point_comparison.hpp>#include <boost/math/concepts/real_concept.hpp> // for real_concept#include <boost/math/distributions/poisson.hpp> using boost::math::poisson_distribution;#include <boost/math/tools/test.hpp> // for real_concept#include <boost/math/special_functions/gamma.hpp> // for (incomplete) gamma.// using boost::math::qamma_Q;#include <iostream> using std::cout; using std::endl; using std::setprecision; using std::showpoint; using std::ios;#include <limits> using std::numeric_limits;template <class RealType> // Any floating-point type RealType.void test_spots(RealType){ // Basic sanity checks, tolerance is about numeric_limits<RealType>::digits10 decimal places, // guaranteed for type RealType, eg 6 for float, 15 for double, // expressed as a percentage (so -2) for BOOST_CHECK_CLOSE, int decdigits = numeric_limits<RealType>::digits10; // May eb >15 for 80 and 128-bit FP typtes. if (decdigits <= 0) { // decdigits is not defined, for example real concept, // so assume precision of most test data is double (for example, MathCAD). decdigits = numeric_limits<double>::digits10; // == 15 for 64-bit } if (decdigits > 15 ) // numeric_limits<double>::digits10) { // 15 is the accuracy of the MathCAD test data. decdigits = 15; // numeric_limits<double>::digits10; } decdigits -= 1; // Perhaps allow some decimal digit(s) margin of numerical error. RealType tolerance = static_cast<RealType>(std::pow(10., static_cast<double>(2-decdigits))); // 1e-6 (-2 so as %) tolerance *= 2; // Allow some bit(s) small margin (2 means + or - 1 bit) of numerical error. // Typically 2e-13% = 2e-15 as fraction for double. // Sources of spot test values: // Many be some combinations for which the result is 'exact', // or at least is good to 40 decimal digits. // 40 decimal digits includes 128-bit significand User Defined Floating-Point types, // Best source of accurate values is: // Mathworld online calculator (40 decimal digits precision, suitable for up to 128-bit significands) // http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=GammaRegularized // GammaRegularized is same as gamma incomplete, gamma or gamma_q(a, x) or Q(a, z). // http://documents.wolfram.com/calculationcenter/v2/Functions/ListsMatrices/Statistics/PoissonDistribution.html // MathCAD defines ppois(k, lambda== mean) as k integer, k >=0. // ppois(0, 5) = 6.73794699908547e-3 // ppois(1, 5) = 0.040427681994513; // ppois(10, 10) = 5.830397501929850E-001 // ppois(10, 1) = 9.999999899522340E-001 // ppois(5,5) = 0.615960654833065 // qpois returns inverse Poission distribution, that is the smallest (floor) k so that ppois(k, lambda) >= p // p is real number, real mean lambda > 0 // k is approximately the integer for which probability(X <= k) = p // when random variable X has the Poisson distribution with parameters lambda. // Uses discrete bisection. // qpois(6.73794699908547e-3, 5) = 1 // qpois(0.040427681994513, 5) = // Test Poisson with spot values from MathCAD 'known good'. using boost::math::poisson_distribution; using ::boost::math::poisson; using ::boost::math::cdf; using ::boost::math::pdf; // Check that bad arguments throw. BOOST_CHECK_THROW( cdf(poisson_distribution<RealType>(static_cast<RealType>(0)), // mean zero is bad. static_cast<RealType>(0)), // even for a good k. std::domain_error); // Expected error to be thrown. BOOST_CHECK_THROW( cdf(poisson_distribution<RealType>(static_cast<RealType>(-1)), // mean negative is bad. static_cast<RealType>(0)), std::domain_error); BOOST_CHECK_THROW( cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unit OK, static_cast<RealType>(-1)), // but negative events is bad. std::domain_error); BOOST_CHECK_THROW( cdf(poisson_distribution<RealType>(static_cast<RealType>(0)), // mean zero is bad. static_cast<RealType>(99999)), // for any k events. std::domain_error); BOOST_CHECK_THROW( cdf(poisson_distribution<RealType>(static_cast<RealType>(0)), // mean zero is bad. static_cast<RealType>(99999)), // for any k events. std::domain_error); BOOST_CHECK_THROW( quantile(poisson_distribution<RealType>(static_cast<RealType>(0)), // mean zero. static_cast<RealType>(0.5)), // probability OK. std::domain_error); BOOST_CHECK_THROW( quantile(poisson_distribution<RealType>(static_cast<RealType>(-1)), static_cast<RealType>(-1)), // bad probability. std::domain_error); BOOST_CHECK_THROW( quantile(poisson_distribution<RealType>(static_cast<RealType>(1)), static_cast<RealType>(-1)), // bad probability. std::domain_error); // Check some test values. BOOST_CHECK_CLOSE( // mode mode(poisson_distribution<RealType>(static_cast<RealType>(4))), // mode = mean = 4. static_cast<RealType>(4), // mode. tolerance); //BOOST_CHECK_CLOSE( // mode // median(poisson_distribution<RealType>(static_cast<RealType>(4))), // mode = mean = 4. // static_cast<RealType>(4), // mode. // tolerance); poisson_distribution<RealType> dist4(static_cast<RealType>(40)); BOOST_CHECK_CLOSE( // median median(dist4), // mode = mean = 4. median = 40.328333333333333 quantile(dist4, static_cast<RealType>(0.5)), // 39.332839138842637 tolerance); // PDF BOOST_CHECK_CLOSE( pdf(poisson_distribution<RealType>(static_cast<RealType>(4)), // mean 4. static_cast<RealType>(0)), static_cast<RealType>(1.831563888873410E-002), // probability. tolerance); BOOST_CHECK_CLOSE( pdf(poisson_distribution<RealType>(static_cast<RealType>(4)), // mean 4. static_cast<RealType>(2)), static_cast<RealType>(1.465251111098740E-001), // probability. tolerance); BOOST_CHECK_CLOSE( pdf(poisson_distribution<RealType>(static_cast<RealType>(20)), // mean big. static_cast<RealType>(1)), // k small static_cast<RealType>(4.122307244877130E-008), // probability. tolerance); BOOST_CHECK_CLOSE( pdf(poisson_distribution<RealType>(static_cast<RealType>(4)), // mean 4. static_cast<RealType>(20)), // K>> mean static_cast<RealType>(8.277463646553730E-009), // probability. tolerance); // CDF BOOST_CHECK_CLOSE( cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity. static_cast<RealType>(0)), // zero k events. static_cast<RealType>(3.678794411714420E-1), // probability. tolerance); BOOST_CHECK_CLOSE( cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity. static_cast<RealType>(1)), // one k event. static_cast<RealType>(7.357588823428830E-1), // probability. tolerance); BOOST_CHECK_CLOSE( cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity. static_cast<RealType>(2)), // two k events. static_cast<RealType>(9.196986029286060E-1), // probability. tolerance); BOOST_CHECK_CLOSE( cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity. static_cast<RealType>(10)), // two k events. static_cast<RealType>(9.999999899522340E-1), // probability. tolerance); BOOST_CHECK_CLOSE( cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity. static_cast<RealType>(15)), // two k events. static_cast<RealType>(9.999999999999810E-1), // probability. tolerance); BOOST_CHECK_CLOSE( cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity. static_cast<RealType>(16)), // two k events. static_cast<RealType>(9.999999999999990E-1), // probability. tolerance); BOOST_CHECK_CLOSE( cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity. static_cast<RealType>(17)), // two k events. static_cast<RealType>(1.), // probability unity for double. tolerance); BOOST_CHECK_CLOSE( cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity. static_cast<RealType>(33)), // k events at limit for float unchecked_factorial table. static_cast<RealType>(1.), // probability. tolerance); BOOST_CHECK_CLOSE( cdf(poisson_distribution<RealType>(static_cast<RealType>(100)), // mean 100. static_cast<RealType>(33)), // k events at limit for float unchecked_factorial table. static_cast<RealType>(6.328271240363390E-15), // probability is tiny. tolerance * static_cast<RealType>(2e11)); // 6.3495253382825722e-015 MathCAD // Note that there two tiny probability are much more different. BOOST_CHECK_CLOSE( cdf(poisson_distribution<RealType>(static_cast<RealType>(100)), // mean 100. static_cast<RealType>(34)), // k events at limit for float unchecked_factorial table. static_cast<RealType>(1.898481372109020E-14), // probability is tiny. tolerance*static_cast<RealType>(2e11)); // 1.8984813721090199e-014 MathCAD BOOST_CHECK_CLOSE( cdf(poisson_distribution<RealType>(static_cast<RealType>(33)), // mean = k static_cast<RealType>(33)), // k events above limit for float unchecked_factorial table. static_cast<RealType>(5.461191812386560E-1), // probability. tolerance); BOOST_CHECK_CLOSE( cdf(poisson_distribution<RealType>(static_cast<RealType>(33)), // mean = k-1 static_cast<RealType>(34)), // k events above limit for float unchecked_factorial table. static_cast<RealType>(6.133535681502950E-1), // probability. tolerance); BOOST_CHECK_CLOSE( cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity. static_cast<RealType>(34)), // k events above limit for float unchecked_factorial table. static_cast<RealType>(1.), // probability. tolerance); BOOST_CHECK_CLOSE( cdf(poisson_distribution<RealType>(static_cast<RealType>(5.)), // mean static_cast<RealType>(5)), // k events. static_cast<RealType>(0.615960654833065), // probability. tolerance); BOOST_CHECK_CLOSE( cdf(poisson_distribution<RealType>(static_cast<RealType>(5.)), // mean static_cast<RealType>(1)), // k events. static_cast<RealType>(0.040427681994512805), // probability. tolerance); BOOST_CHECK_CLOSE( cdf(poisson_distribution<RealType>(static_cast<RealType>(5.)), // mean static_cast<RealType>(0)), // k events (uses special case formula, not gamma). static_cast<RealType>(0.006737946999085467), // probability. tolerance); BOOST_CHECK_CLOSE( cdf(poisson_distribution<RealType>(static_cast<RealType>(1.)), // mean static_cast<RealType>(0)), // k events (uses special case formula, not gamma). static_cast<RealType>(0.36787944117144233), // probability. tolerance); BOOST_CHECK_CLOSE( cdf(poisson_distribution<RealType>(static_cast<RealType>(10.)), // mean static_cast<RealType>(10)), // k events. static_cast<RealType>(0.5830397501929856), // probability. tolerance); BOOST_CHECK_CLOSE( cdf(poisson_distribution<RealType>(static_cast<RealType>(4.)), // mean static_cast<RealType>(5)), // k events. static_cast<RealType>(0.785130387030406), // probability. tolerance); // complement CDF BOOST_CHECK_CLOSE( // Complement CDF cdf(complement(poisson_distribution<RealType>(static_cast<RealType>(4.)), // mean static_cast<RealType>(5))), // k events. static_cast<RealType>(1 - 0.785130387030406), // probability. tolerance); BOOST_CHECK_CLOSE( // Complement CDF
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -