⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 test_nc_chi_squared.cpp

📁 Boost provides free peer-reviewed portable C++ source libraries. We emphasize libraries that work
💻 CPP
📖 第 1 页 / 共 2 页
字号:
// test_nc_chi_squared.cpp// Copyright John Maddock 2008.// Use, modification and distribution are subject to the// Boost Software License, Version 1.0.// (See accompanying file LICENSE_1_0.txt// or copy at http://www.boost.org/LICENSE_1_0.txt)#ifdef _MSC_VER#pragma warning (disable:4127 4512)#endif#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)#  define TEST_FLOAT#  define TEST_DOUBLE#  define TEST_LDOUBLE#  define TEST_REAL_CONCEPT#endif#include <boost/math/concepts/real_concept.hpp> // for real_concept#include <boost/math/distributions/non_central_chi_squared.hpp> // for chi_squared_distribution#include <boost/math/special_functions/cbrt.hpp> // for chi_squared_distribution#include <boost/test/included/test_exec_monitor.hpp> // for test_main#include <boost/test/floating_point_comparison.hpp> // for BOOST_CHECK_CLOSE#include "functor.hpp"#include "handle_test_result.hpp"#include "test_nccs_hooks.hpp"#include <iostream>using std::cout;using std::endl;#include <limits>using std::numeric_limits;#define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \   {\      unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\      BOOST_CHECK_CLOSE(a, b, prec); \      if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\      {\         std::cerr << "Failure was at row " << i << std::endl;\         std::cerr << std::setprecision(35); \         std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\         std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\      }\   }#define BOOST_CHECK_EX(a, i) \   {\      unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\      BOOST_CHECK(a); \      if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\      {\         std::cerr << "Failure was at row " << i << std::endl;\         std::cerr << std::setprecision(35); \         std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\         std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\      }\   }void expected_results(){   //   // Define the max and mean errors expected for   // various compilers and platforms.   //   const char* largest_type;#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS   if(boost::math::policies::digits<double, boost::math::policies::policy<> >() == boost::math::policies::digits<long double, boost::math::policies::policy<> >())   {      largest_type = "(long\\s+)?double|real_concept";   }   else   {      largest_type = "long double|real_concept";   }#else   largest_type = "(long\\s+)?double|real_concept";#endif   add_expected_result(      "[^|]*",                          // compiler      "[^|]*",                          // stdlib      "Mac OS",                          // platform      largest_type,                     // test type(s)      "[^|]*medium[^|]*",                   // test data group      "[^|]*", 550, 100);                  // test function   //   // Catch all cases come last:   //   add_expected_result(      "[^|]*",                          // compiler      "[^|]*",                          // stdlib      "[^|]*",                          // platform      largest_type,                     // test type(s)      "[^|]*medium[^|]*",                   // test data group      "[^|]*", 350, 100);                  // test function   add_expected_result(      "[^|]*",                          // compiler      "[^|]*",                          // stdlib      "[^|]*",                          // platform      largest_type,                     // test type(s)      "[^|]*large[^|]*",                   // test data group      "[^|]*", 17000, 3000);                  // test function   //   // Allow some long double error to creep into   // the double results:   //   add_expected_result(      "[^|]*",                          // compiler      "[^|]*",                          // stdlib      "[^|]*",                          // platform      "double",                         // test type(s)      "[^|]*",                   // test data group      "[^|]*", 3, 2);                  // test function   //   // Finish off by printing out the compiler/stdlib/platform names,   // we do this to make it easier to mark up expected error rates.   //   std::cout << "Tests run with " << BOOST_COMPILER << ", "       << BOOST_STDLIB << ", " << BOOST_PLATFORM << std::endl;}template <class RealType>RealType naive_pdf(RealType v, RealType lam, RealType x){   // Formula direct from    // http://mathworld.wolfram.com/NoncentralChi-SquaredDistribution.html   // with no simplification:   RealType sum, term, prefix(1);   RealType eps = boost::math::tools::epsilon<RealType>();   term = sum = pdf(boost::math::chi_squared_distribution<RealType>(v), x);   for(int i = 1;; ++i)   {      prefix *= lam / (2 * i);      term = prefix * pdf(boost::math::chi_squared_distribution<RealType>(v + 2 * i), x);      sum += term;      if(term / sum < eps)         break;   }   return sum * exp(-lam/2);}template <class RealType>void test_spot(     RealType df,    // Degrees of freedom     RealType ncp,   // non-centrality param     RealType cs,    // Chi Square statistic     RealType P,     // CDF     RealType Q,     // Complement of CDF     RealType tol)   // Test tolerance{   boost::math::non_central_chi_squared_distribution<RealType> dist(df, ncp);   BOOST_CHECK_CLOSE(      cdf(dist, cs), P, tol);   try{      BOOST_CHECK_CLOSE(         pdf(dist, cs), naive_pdf(dist.degrees_of_freedom(), ncp, cs), tol * 50);   }   catch(const std::overflow_error&)   {}   if((P < 0.99) && (Q < 0.99))   {      //      // We can only check this if P is not too close to 1,      // so that we can guarentee Q is reasonably free of error:      //      BOOST_CHECK_CLOSE(         cdf(complement(dist, cs)), Q, tol);      BOOST_CHECK_CLOSE(            quantile(dist, P), cs, tol * 10);      BOOST_CHECK_CLOSE(            quantile(complement(dist, Q)), cs, tol * 10);      BOOST_CHECK_CLOSE(         dist.find_degrees_of_freedom(ncp, cs, P), df, tol * 10);      BOOST_CHECK_CLOSE(         dist.find_degrees_of_freedom(boost::math::complement(ncp, cs, Q)), df, tol * 10);      BOOST_CHECK_CLOSE(         dist.find_non_centrality(df, cs, P), ncp, tol * 10);      BOOST_CHECK_CLOSE(         dist.find_non_centrality(boost::math::complement(df, cs, Q)), ncp, tol * 10);   }}template <class RealType> // Any floating-point type RealType.void test_spots(RealType){   RealType tolerance = (std::max)(      boost::math::tools::epsilon<RealType>(),      (RealType)boost::math::tools::epsilon<double>() * 5) * 100;   //   // At float precision we need to up the tolerance, since    // the input values are rounded off to inexact quantities   // the results get thrown off by a noticeable amount.   //   if(boost::math::tools::digits<RealType>() < 50)      tolerance *= 50;   if(boost::is_floating_point<RealType>::value != 1)      tolerance *= 20; // real_concept special functions are less accurate   cout << "Tolerance = " << tolerance << "%." << endl;   using boost::math::chi_squared_distribution;   using  ::boost::math::chi_squared;   using  ::boost::math::cdf;   using  ::boost::math::pdf;   //   // Test against the data from Table 6 of:   //   // "Self-Validating Computations of Probabilities for Selected    // Central and Noncentral Univariate Probability Functions."   // Morgan C. Wang; William J. Kennedy   // Journal of the American Statistical Association,    // Vol. 89, No. 427. (Sep., 1994), pp. 878-887.   //   test_spot(      static_cast<RealType>(1),   // degrees of freedom      static_cast<RealType>(6),   // non centrality      static_cast<RealType>(0.00393),   // Chi Squared statistic      static_cast<RealType>(0.2498463724258039e-2),       // Probability of result (CDF), P      static_cast<RealType>(1-0.2498463724258039e-2),           // Q = 1 - P      tolerance);   test_spot(      static_cast<RealType>(5),   // degrees of freedom      static_cast<RealType>(1),   // non centrality      static_cast<RealType>(9.23636),   // Chi Squared statistic      static_cast<RealType>(0.8272918751175548),       // Probability of result (CDF), P      static_cast<RealType>(1-0.8272918751175548),           // Q = 1 - P      tolerance);   test_spot(      static_cast<RealType>(11),   // degrees of freedom      static_cast<RealType>(21),   // non centrality      static_cast<RealType>(24.72497),   // Chi Squared statistic      static_cast<RealType>(0.2539481822183126),       // Probability of result (CDF), P      static_cast<RealType>(1-0.2539481822183126),           // Q = 1 - P      tolerance);   test_spot(      static_cast<RealType>(31),   // degrees of freedom      static_cast<RealType>(6),   // non centrality      static_cast<RealType>(44.98534),   // Chi Squared statistic      static_cast<RealType>(0.8125198785064969),       // Probability of result (CDF), P      static_cast<RealType>(1-0.8125198785064969),           // Q = 1 - P      tolerance);   test_spot(      static_cast<RealType>(51),   // degrees of freedom      static_cast<RealType>(1),   // non centrality      static_cast<RealType>(38.56038),   // Chi Squared statistic      static_cast<RealType>(0.8519497361859118e-1),       // Probability of result (CDF), P      static_cast<RealType>(1-0.8519497361859118e-1),           // Q = 1 - P      tolerance * 2);   test_spot(      static_cast<RealType>(100),   // degrees of freedom      static_cast<RealType>(16),   // non centrality      static_cast<RealType>(82.35814),   // Chi Squared statistic      static_cast<RealType>(0.1184348822747824e-1),       // Probability of result (CDF), P      static_cast<RealType>(1-0.1184348822747824e-1),           // Q = 1 - P      tolerance);   test_spot(      static_cast<RealType>(300),   // degrees of freedom      static_cast<RealType>(16),   // non centrality      static_cast<RealType>(331.78852),   // Chi Squared statistic      static_cast<RealType>(0.7355956710306709),       // Probability of result (CDF), P      static_cast<RealType>(1-0.7355956710306709),           // Q = 1 - P      tolerance);   test_spot(      static_cast<RealType>(500),   // degrees of freedom      static_cast<RealType>(21),   // non centrality      static_cast<RealType>(459.92612),   // Chi Squared statistic      static_cast<RealType>(0.2797023600800060e-1),       // Probability of result (CDF), P      static_cast<RealType>(1-0.2797023600800060e-1),           // Q = 1 - P      tolerance);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -