📄 test_beta_dist.cpp
字号:
BOOST_CHECK_CLOSE_FRACTION( quantile(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(0.5)), static_cast<RealType>(0.5640942168489749316118742861695149357858L)), // x static_cast<RealType>(0.6), // Wolfram tolerance); BOOST_CHECK_CLOSE_FRACTION( cdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.5)), static_cast<RealType>(0.6)), // x static_cast<RealType>(0.1778078083562213736802876784474931812329L), // Wolfram tolerance); BOOST_CHECK_CLOSE_FRACTION( quantile(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.5)), static_cast<RealType>(0.1778078083562213736802876784474931812329L)), // x static_cast<RealType>(0.6), // Wolfram tolerance); // gives BOOST_CHECK_CLOSE_FRACTION( cdf(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)), static_cast<RealType>(0.1)), // x static_cast<RealType>(0.1), // 0.1000000000000000000000000000000000000000 // Wolfram tolerance); BOOST_CHECK_CLOSE_FRACTION( quantile(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)), static_cast<RealType>(0.1)), // x static_cast<RealType>(0.1), // 0.1000000000000000000000000000000000000000 // Wolfram tolerance); BOOST_CHECK_CLOSE_FRACTION( cdf(complement(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(0.5)), static_cast<RealType>(0.1))), // complement of x static_cast<RealType>(0.7951672353008665483508021524494810519023L), // Wolfram tolerance); BOOST_CHECK_CLOSE_FRACTION( quantile(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)), static_cast<RealType>(0.0280000000000000000000000000000000000L)), // x static_cast<RealType>(0.1), // Wolfram tolerance); BOOST_CHECK_CLOSE_FRACTION( cdf(complement(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)), static_cast<RealType>(0.1))), // x static_cast<RealType>(0.9720000000000000000000000000000000000000L), // Exact. // Wolfram tolerance); BOOST_CHECK_CLOSE_FRACTION( pdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)), static_cast<RealType>(0.9999)), // x static_cast<RealType>(0.0005999399999999344L), // http://members.aol.com/iandjmsmith/BETAEX.HTM tolerance*10); // Note loss of precision calculating 1-p test value. //void test_spot( // RealType a, // alpha a // RealType b, // beta b // RealType x, // Probability // RealType P, // CDF of beta(a, b) // RealType Q, // Complement of CDF // RealType tol) // Test tolerance. // These test quantiles and complements, and parameter estimates as well. // Spot values using, for example: // http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=BetaRegularized&ptype=0&z=0.1&a=0.5&b=3&digits=40 test_spot( static_cast<RealType>(1), // alpha a static_cast<RealType>(1), // beta b static_cast<RealType>(0.1), // Probability p static_cast<RealType>(0.1), // Probability of result (CDF of beta), P static_cast<RealType>(0.9), // Complement of CDF Q = 1 - P tolerance); // Test tolerance. test_spot( static_cast<RealType>(2), // alpha a static_cast<RealType>(2), // beta b static_cast<RealType>(0.1), // Probability p static_cast<RealType>(0.0280000000000000000000000000000000000L), // Probability of result (CDF of beta), P static_cast<RealType>(1 - 0.0280000000000000000000000000000000000L), // Complement of CDF Q = 1 - P tolerance); // Test tolerance. test_spot( static_cast<RealType>(2), // alpha a static_cast<RealType>(2), // beta b static_cast<RealType>(0.5), // Probability p static_cast<RealType>(0.5), // Probability of result (CDF of beta), P static_cast<RealType>(0.5), // Complement of CDF Q = 1 - P tolerance); // Test tolerance. test_spot( static_cast<RealType>(2), // alpha a static_cast<RealType>(2), // beta b static_cast<RealType>(0.9), // Probability p static_cast<RealType>(0.972000000000000), // Probability of result (CDF of beta), P static_cast<RealType>(1-0.972000000000000), // Complement of CDF Q = 1 - P tolerance); // Test tolerance. test_spot( static_cast<RealType>(2), // alpha a static_cast<RealType>(2), // beta b static_cast<RealType>(0.01), // Probability p static_cast<RealType>(0.0002980000000000000000000000000000000000000L), // Probability of result (CDF of beta), P static_cast<RealType>(1-0.0002980000000000000000000000000000000000000L), // Complement of CDF Q = 1 - P tolerance); // Test tolerance. test_spot( static_cast<RealType>(2), // alpha a static_cast<RealType>(2), // beta b static_cast<RealType>(0.001), // Probability p static_cast<RealType>(2.998000000000000000000000000000000000000E-6L), // Probability of result (CDF of beta), P static_cast<RealType>(1-2.998000000000000000000000000000000000000E-6L), // Complement of CDF Q = 1 - P tolerance); // Test tolerance. test_spot( static_cast<RealType>(2), // alpha a static_cast<RealType>(2), // beta b static_cast<RealType>(0.0001), // Probability p static_cast<RealType>(2.999800000000000000000000000000000000000E-8L), // Probability of result (CDF of beta), P static_cast<RealType>(1-2.999800000000000000000000000000000000000E-8L), // Complement of CDF Q = 1 - P tolerance); // Test tolerance. test_spot( static_cast<RealType>(2), // alpha a static_cast<RealType>(2), // beta b static_cast<RealType>(0.99), // Probability p static_cast<RealType>(0.9997020000000000000000000000000000000000L), // Probability of result (CDF of beta), P static_cast<RealType>(1-0.9997020000000000000000000000000000000000L), // Complement of CDF Q = 1 - P tolerance); // Test tolerance. test_spot( static_cast<RealType>(0.5), // alpha a static_cast<RealType>(2), // beta b static_cast<RealType>(0.5), // Probability p static_cast<RealType>(0.8838834764831844055010554526310612991060L), // Probability of result (CDF of beta), P static_cast<RealType>(1-0.8838834764831844055010554526310612991060L), // Complement of CDF Q = 1 - P tolerance); // Test tolerance. test_spot( static_cast<RealType>(0.5), // alpha a static_cast<RealType>(3.), // beta b static_cast<RealType>(0.7), // Probability p static_cast<RealType>(0.9903963064097119299191611355232156905687L), // Probability of result (CDF of beta), P static_cast<RealType>(1-0.9903963064097119299191611355232156905687L), // Complement of CDF Q = 1 - P tolerance); // Test tolerance. test_spot( static_cast<RealType>(0.5), // alpha a static_cast<RealType>(3.), // beta b static_cast<RealType>(0.1), // Probability p static_cast<RealType>(0.5545844446520295253493059553548880128511L), // Probability of result (CDF of beta), P static_cast<RealType>(1-0.5545844446520295253493059553548880128511L), // Complement of CDF Q = 1 - P tolerance); // Test tolerance.} // template <class RealType>void test_spots(RealType)int test_main(int, char* []){ BOOST_MATH_CONTROL_FP; // Check that can generate beta distribution using one convenience methods: beta_distribution<> mybeta11(1., 1.); // Using default RealType double. // but that // boost::math::beta mybeta1(1., 1.); // Using typedef fails. // error C2039: 'beta' : is not a member of 'boost::math' // Basic sanity-check spot values. // Some simple checks using double only. BOOST_CHECK_EQUAL(mybeta11.alpha(), 1); // BOOST_CHECK_EQUAL(mybeta11.beta(), 1); BOOST_CHECK_EQUAL(mean(mybeta11), 0.5); // 1 / (1 + 1) = 1/2 exactly BOOST_CHECK_THROW(mode(mybeta11), std::domain_error); beta_distribution<> mybeta22(2., 2.); // pdf is dome shape. BOOST_CHECK_EQUAL(mode(mybeta22), 0.5); // 2-1 / (2+2-2) = 1/2 exactly. beta_distribution<> mybetaH2(0.5, 2.); // beta_distribution<> mybetaH3(0.5, 3.); // // Check a few values using double. BOOST_CHECK_EQUAL(pdf(mybeta11, 1), 1); // is uniform unity over 0 to 1, BOOST_CHECK_EQUAL(pdf(mybeta11, 0), 1); // including zero and unity. // Although these next three have an exact result, internally they're // *not* treated as special cases, and may be out by a couple of eps: BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta11, 0.5), 1.0, 5*std::numeric_limits<double>::epsilon()); BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta11, 0.0001), 1.0, 5*std::numeric_limits<double>::epsilon()); BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta11, 0.9999), 1.0, 5*std::numeric_limits<double>::epsilon()); BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta11, 0.1), 0.1, 2 * std::numeric_limits<double>::epsilon()); BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta11, 0.5), 0.5, 2 * std::numeric_limits<double>::epsilon()); BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta11, 0.9), 0.9, 2 * std::numeric_limits<double>::epsilon()); BOOST_CHECK_EQUAL(cdf(mybeta11, 1), 1.); // Exact unity expected. double tol = std::numeric_limits<double>::epsilon() * 10; BOOST_CHECK_EQUAL(pdf(mybeta22, 1), 0); // is dome shape. BOOST_CHECK_EQUAL(pdf(mybeta22, 0), 0); BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta22, 0.5), 1.5, tol); // top of dome, expect exactly 3/2. BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta22, 0.0001), 5.9994000000000E-4, tol); BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta22, 0.9999), 5.9994000000000E-4, tol*50); BOOST_CHECK_EQUAL(cdf(mybeta22, 0.), 0); // cdf is a curved line from 0 to 1. BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.1), 0.028000000000000, tol); BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.5), 0.5, tol); BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.9), 0.972000000000000, tol); BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.0001), 2.999800000000000000000000000000000000000E-8, tol); BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.001), 2.998000000000000000000000000000000000000E-6, tol); BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.01), 0.0002980000000000000000000000000000000000000, tol); BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.1), 0.02800000000000000000000000000000000000000, tol); // exact BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.99), 0.9997020000000000000000000000000000000000, tol); BOOST_CHECK_EQUAL(cdf(mybeta22, 1), 1.); // Exact unity expected. // Complement BOOST_CHECK_CLOSE_FRACTION(cdf(complement(mybeta22, 0.9)), 0.028000000000000, tol); // quantile. BOOST_CHECK_CLOSE_FRACTION(quantile(mybeta22, 0.028), 0.1, tol); BOOST_CHECK_CLOSE_FRACTION(quantile(complement(mybeta22, 1 - 0.028)), 0.1, tol); BOOST_CHECK_EQUAL(kurtosis(mybeta11), 3+ kurtosis_excess(mybeta11)); // Check kurtosis_excess = kurtosis - 3; BOOST_CHECK_CLOSE_FRACTION(variance(mybeta22), 0.05, tol); BOOST_CHECK_CLOSE_FRACTION(mean(mybeta22), 0.5, tol); BOOST_CHECK_CLOSE_FRACTION(mode(mybeta22), 0.5, tol); BOOST_CHECK_CLOSE_FRACTION(median(mybeta22), 0.5, tol); BOOST_CHECK_CLOSE_FRACTION(skewness(mybeta22), 0.0, tol); BOOST_CHECK_CLOSE_FRACTION(kurtosis_excess(mybeta22), -144.0 / 168, tol); BOOST_CHECK_CLOSE_FRACTION(skewness(beta_distribution<>(3, 5)), 0.30983866769659335081434123198259, tol); BOOST_CHECK_CLOSE_FRACTION(beta_distribution<double>::find_alpha(mean(mybeta22), variance(mybeta22)), mybeta22.alpha(), tol); // mean, variance, probability. BOOST_CHECK_CLOSE_FRACTION(beta_distribution<double>::find_beta(mean(mybeta22), variance(mybeta22)), mybeta22.beta(), tol);// mean, variance, probability. BOOST_CHECK_CLOSE_FRACTION(mybeta22.find_alpha(mybeta22.beta(), 0.8, cdf(mybeta22, 0.8)), mybeta22.alpha(), tol); BOOST_CHECK_CLOSE_FRACTION(mybeta22.find_beta(mybeta22.alpha(), 0.8, cdf(mybeta22, 0.8)), mybeta22.beta(), tol); beta_distribution<real_concept> rcbeta22(2, 2); // Using RealType real_concept. cout << "numeric_limits<real_concept>::is_specialized " << numeric_limits<real_concept>::is_specialized << endl; cout << "numeric_limits<real_concept>::digits " << numeric_limits<real_concept>::digits << endl; cout << "numeric_limits<real_concept>::digits10 " << numeric_limits<real_concept>::digits10 << endl; cout << "numeric_limits<real_concept>::epsilon " << numeric_limits<real_concept>::epsilon() << endl; // (Parameter value, arbitrarily zero, only communicates the floating point type). test_spots(0.0F); // Test float. test_spots(0.0); // Test double.#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS test_spots(0.0L); // Test long double.#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.#endif#endif return 0;} // int test_main(int, char* [])/*Output is:-Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_beta_dist.exe"Running 1 test case...numeric_limits<real_concept>::is_specialized 0numeric_limits<real_concept>::digits 0numeric_limits<real_concept>::digits10 0numeric_limits<real_concept>::epsilon 0Boost::math::tools::epsilon = 1.19209e-007std::numeric_limits::epsilon = 1.19209e-007epsilon = 1.19209e-007, Tolerance = 0.0119209%.Boost::math::tools::epsilon = 2.22045e-016std::numeric_limits::epsilon = 2.22045e-016epsilon = 2.22045e-016, Tolerance = 2.22045e-011%.Boost::math::tools::epsilon = 2.22045e-016std::numeric_limits::epsilon = 2.22045e-016epsilon = 2.22045e-016, Tolerance = 2.22045e-011%.Boost::math::tools::epsilon = 2.22045e-016std::numeric_limits::epsilon = 0epsilon = 2.22045e-016, Tolerance = 2.22045e-011%.*** No errors detected*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -