📄 test_igamma_inv.cpp
字号:
// It is however a useful sanity check. // value_type precision = static_cast<value_type>(ldexp(1.0, 1-boost::math::policies::digits<value_type, boost::math::policies::policy<> >()/2)) * 100; if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50) precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated to float for(unsigned i = 0; i < data.size(); ++i) { // // These inverse tests are thrown off if the output of the // incomplete gamma is too close to 1: basically there is insuffient // information left in the value we're using as input to the inverse // to be able to get back to the original value. // if(data[i][5] == 0) BOOST_CHECK_EQUAL(boost::math::gamma_p_inv(data[i][0], data[i][5]), value_type(0)); else if((1 - data[i][5] > 0.001) && (fabs(data[i][5]) > 2 * boost::math::tools::min_value<value_type>()) && (fabs(data[i][5]) > 2 * boost::math::tools::min_value<double>())) { value_type inv = boost::math::gamma_p_inv(data[i][0], data[i][5]); BOOST_CHECK_CLOSE_EX(data[i][1], inv, precision, i); } else if(1 == data[i][5]) BOOST_CHECK_EQUAL(boost::math::gamma_p_inv(data[i][0], data[i][5]), boost::math::tools::max_value<value_type>()); else { // not enough bits in our input to get back to x, but we should be in // the same ball park: value_type inv = boost::math::gamma_p_inv(data[i][0], data[i][5]); BOOST_CHECK_CLOSE_EX(data[i][1], inv, 100000, i); } if(data[i][3] == 0) BOOST_CHECK_EQUAL(boost::math::gamma_q_inv(data[i][0], data[i][3]), boost::math::tools::max_value<value_type>()); else if((1 - data[i][3] > 0.001) && (fabs(data[i][3]) > 2 * boost::math::tools::min_value<value_type>())) { value_type inv = boost::math::gamma_q_inv(data[i][0], data[i][3]); BOOST_CHECK_CLOSE_EX(data[i][1], inv, precision, i); } else if(1 == data[i][3]) BOOST_CHECK_EQUAL(boost::math::gamma_q_inv(data[i][0], data[i][3]), value_type(0)); else if(fabs(data[i][3]) > 2 * boost::math::tools::min_value<value_type>()) { // not enough bits in our input to get back to x, but we should be in // the same ball park: value_type inv = boost::math::gamma_q_inv(data[i][0], data[i][3]); BOOST_CHECK_CLOSE_EX(data[i][1], inv, 100, i); } } std::cout << std::endl;}template <class T>void do_test_gamma_inv(const T& data, const char* type_name, const char* test_name){ typedef typename T::value_type row_type; typedef typename row_type::value_type value_type; typedef value_type (*pg)(value_type, value_type);#if defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS) pg funcp = boost::math::gamma_p_inv<value_type, value_type>;#else pg funcp = boost::math::gamma_p_inv;#endif boost::math::tools::test_result<value_type> result; std::cout << "Testing " << test_name << " with type " << type_name << "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n"; // // test gamma_p_inv(T, T) against data: // result = boost::math::tools::test( data, bind_func(funcp, 0, 1), extract_result(2)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::gamma_p_inv", test_name); // // test gamma_q_inv(T, T) against data: //#if defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS) funcp = boost::math::gamma_q_inv<value_type, value_type>;#else funcp = boost::math::gamma_q_inv;#endif result = boost::math::tools::test( data, bind_func(funcp, 0, 1), extract_result(3)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::gamma_q_inv", test_name);}template <class T>void test_gamma(T, const char* name){ // // The actual test data is rather verbose, so it's in a separate file // // First the data for the incomplete gamma function, each // row has the following 6 entries: // Parameter a, parameter z, // Expected tgamma(a, z), Expected gamma_q(a, z) // Expected tgamma_lower(a, z), Expected gamma_p(a, z) //# include "igamma_med_data.ipp" do_test_gamma_2(igamma_med_data, name, "Running round trip sanity checks on incomplete gamma medium sized values");# include "igamma_small_data.ipp" do_test_gamma_2(igamma_small_data, name, "Running round trip sanity checks on incomplete gamma small values");# include "igamma_big_data.ipp" do_test_gamma_2(igamma_big_data, name, "Running round trip sanity checks on incomplete gamma large values");# include "gamma_inv_data.ipp" do_test_gamma_inv(gamma_inv_data, name, "incomplete gamma inverse(a, z) medium values");# include "gamma_inv_big_data.ipp" do_test_gamma_inv(gamma_inv_big_data, name, "incomplete gamma inverse(a, z) large values");# include "gamma_inv_small_data.ipp" do_test_gamma_inv(gamma_inv_small_data, name, "incomplete gamma inverse(a, z) small values");}template <class T>void test_spots(T, const char* type_name){ std::cout << "Running spot checks for type " << type_name << std::endl; // // basic sanity checks, tolerance is 150 epsilon expressed as a percentage: // T tolerance = boost::math::tools::epsilon<T>() * 15000; if(tolerance < 1e-25f) tolerance = 1e-25f; // limit of test data? BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(1)/100, static_cast<T>(1.0/128)), static_cast<T>(0.35767144525455121503672919307647515332256996883787L), tolerance); BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(1)/100, static_cast<T>(0.5)), static_cast<T>(4.4655350189103486773248562646452806745879516124613e-31L), tolerance*10); // // We can't test in this region against Mathworld's data as the results produced // by functions.wolfram.com appear to be in error, and do *not* round trip with // their own version of gamma_q. Using our output from the inverse as input to // their version of gamma_q *does* round trip however. It should be pointed out // that the functions in this area are very sensitive with nearly infinite // first derivatives, it's also questionable how useful these functions are // in this part of the domain. // //BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(1e-2), static_cast<T>(1.0-1.0/128)), static_cast<T>(3.8106736649978161389878528903698068142257930575497e-181L), tolerance); // BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(0.5), static_cast<T>(1.0/128)), static_cast<T>(3.5379794687984498627918583429482809311448951189097L), tolerance); BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(0.5), static_cast<T>(1.0/2)), static_cast<T>(0.22746821155978637597125832348982469815821055329511L), tolerance); BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(0.5), static_cast<T>(1.0-1.0/128)), static_cast<T>(0.000047938431649305382237483273209405461203600840052182L), tolerance); BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(10), static_cast<T>(1.0/128)), static_cast<T>(19.221865946801723949866005318845155649972164294057L), tolerance); BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(10), static_cast<T>(1.0/2)), static_cast<T>(9.6687146147141311517500637401166726067778162022664L), tolerance); BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(10), static_cast<T>(1.0-1.0/128)), static_cast<T>(3.9754602513640844712089002210120603689809432130520L), tolerance); BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(10000), static_cast<T>(1.0/128)), static_cast<T>(10243.369973939134157953734588122880006091919872879L), tolerance); BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(10000), static_cast<T>(1.0/2)), static_cast<T>(9999.6666686420474237369661574633153551436435884101L), tolerance); BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(10000), static_cast<T>(1.0-1.0/128)), static_cast<T>(9759.8597223369324083191194574874497413261589080204L), tolerance);}int test_main(int, char* []){ expected_results(); BOOST_MATH_CONTROL_FP;#ifndef BOOST_MATH_BUGGY_LARGE_FLOAT_CONSTANTS#ifdef TEST_FLOAT test_spots(0.0F, "float");#endif#endif#ifdef TEST_DOUBLE test_spots(0.0, "double");#endif#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS#ifdef TEST_LDOUBLE test_spots(0.0L, "long double");#endif#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))#ifdef TEST_REAL_CONCEPT test_spots(boost::math::concepts::real_concept(0.1), "real_concept");#endif#endif#endif#ifndef BOOST_MATH_BUGGY_LARGE_FLOAT_CONSTANTS#ifdef TEST_FLOAT test_gamma(0.1F, "float");#endif#endif#ifdef TEST_DOUBLE test_gamma(0.1, "double");#endif#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS#ifdef TEST_LDOUBLE test_gamma(0.1L, "long double");#endif#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))#ifdef TEST_REAL_CONCEPT test_gamma(boost::math::concepts::real_concept(0.1), "real_concept");#endif#endif#endif#else std::cout << "<note>The long double tests have been disabled on this platform " "either because the long double overloads of the usual math functions are " "not available at all, or because they are too inaccurate for these tests " "to pass.</note>" << std::cout;#endif return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -