📄 test_igamma_inv.cpp
字号:
// (C) Copyright John Maddock 2006.// Use, modification and distribution are subject to the// Boost Software License, Version 1.0. (See accompanying file// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)#include <boost/math/concepts/real_concept.hpp>#include <boost/math/special_functions/gamma.hpp>#include <boost/test/included/test_exec_monitor.hpp>#include <boost/test/floating_point_comparison.hpp>#include <boost/math/tools/stats.hpp>#include <boost/math/tools/test.hpp>#include <boost/math/constants/constants.hpp>#include <boost/type_traits/is_floating_point.hpp>#include <boost/array.hpp>#include "functor.hpp"#include "test_gamma_hooks.hpp"#include "handle_test_result.hpp"#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)# define TEST_FLOAT# define TEST_DOUBLE# define TEST_LDOUBLE# define TEST_REAL_CONCEPT#endif//// DESCRIPTION:// ~~~~~~~~~~~~//// This file tests the incomplete gamma function inverses // gamma_p_inv and gamma_q_inv. There are three sets of tests:// 1) Spot tests which compare our results with selected values // computed using the online special function calculator at // functions.wolfram.com, // 2) Accuracy tests use values generated with NTL::RR at // 1000-bit precision and our generic versions of these functions.// 3) Round trip sanity checks, use the test data for the forward// functions, and verify that we can get (approximately) back// where we started.//// Note that when this file is first run on a new platform many of// these tests will fail: the default accuracy is 1 epsilon which// is too tight for most platforms. In this situation you will // need to cast a human eye over the error rates reported and make// a judgement as to whether they are acceptable. Either way please// report the results to the Boost mailing list. Acceptable rates of// error are marked up below as a series of regular expressions that// identify the compiler/stdlib/platform/data-type/test-data/test-function// along with the maximum expected peek and RMS mean errors for that// test.//void expected_results(){ // // Define the max and mean errors expected for // various compilers and platforms. // const char* largest_type;#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS if(boost::math::policies::digits<double, boost::math::policies::policy<> >() == boost::math::policies::digits<long double, boost::math::policies::policy<> >()) { largest_type = "(long\\s+)?double"; } else { largest_type = "long double"; }#else largest_type = "(long\\s+)?double";#endif // // Large exponent range causes more extreme test cases to be evaluated: // if(std::numeric_limits<long double>::max_exponent > std::numeric_limits<double>::max_exponent) { add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "[^|]*", // platform largest_type, // test type(s) "[^|]*small[^|]*", // test data group "[^|]*", 200000, 10000); // test function add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "[^|]*", // platform "real_concept", // test type(s) "[^|]*small[^|]*", // test data group "[^|]*", 70000, 8000); // test function } // // These high error rates are seen on on some Linux // architectures: // add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "linux.*", // platform largest_type, // test type(s) "[^|]*medium[^|]*", // test data group "[^|]*", 350, 5); // test function add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "linux.*", // platform largest_type, // test type(s) "[^|]*large[^|]*", // test data group "[^|]*", 150, 5); // test function // // Catch all cases come last: // add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "[^|]*", // platform largest_type, // test type(s) "[^|]*medium[^|]*", // test data group "[^|]*", 20, 5); // test function add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "[^|]*", // platform largest_type, // test type(s) "[^|]*large[^|]*", // test data group "[^|]*", 5, 2); // test function add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "[^|]*", // platform largest_type, // test type(s) "[^|]*small[^|]*", // test data group "[^|]*", 2100, 500); // test function add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "[^|]*", // platform "float|double", // test type(s) "[^|]*small[^|]*", // test data group "boost::math::gamma_p_inv", 500, 60); // test function add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "[^|]*", // platform "float|double", // test type(s) "[^|]*", // test data group "boost::math::gamma_q_inv", 350, 60); // test function add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "[^|]*", // platform "float|double", // test type(s) "[^|]*", // test data group "[^|]*", 4, 2); // test function add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "[^|]*", // platform "real_concept", // test type(s) "[^|]*medium[^|]*", // test data group "[^|]*", 20, 5); // test function add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "[^|]*", // platform "real_concept", // test type(s) "[^|]*large[^|]*", // test data group "[^|]*", 1000, 500); // test function add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "[^|]*", // platform "real_concept", // test type(s) "[^|]*small[^|]*", // test data group "[^|]*", 3700, 500); // test function // // Finish off by printing out the compiler/stdlib/platform names, // we do this to make it easier to mark up expected error rates. // std::cout << "Tests run with " << BOOST_COMPILER << ", " << BOOST_STDLIB << ", " << BOOST_PLATFORM << std::endl;}#define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \ {\ unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\ BOOST_CHECK_CLOSE(a, b, prec); \ if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\ {\ std::cerr << "Failure was at row " << i << std::endl;\ std::cerr << std::setprecision(35); \ std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\ std::cerr << " , " << data[i][3] << " , " << data[i][4] << " , " << data[i][5] << " } " << std::endl;\ }\ }template <class T>void do_test_gamma_2(const T& data, const char* type_name, const char* test_name){ // // test gamma_p_inv(T, T) against data: // using namespace std; typedef typename T::value_type row_type; typedef typename row_type::value_type value_type; std::cout << test_name << " with type " << type_name << std::endl; // // These sanity checks test for a round trip accuracy of one half // of the bits in T, unless T is type float, in which case we check // for just one decimal digit. The problem here is the sensitivity // of the functions, not their accuracy. This test data was generated // for the forward functions, which means that when it is used as // the input to the inverses then it is necessarily inexact. This rounding // of the input is what makes the data unsuitable for use as an accuracy check, // and also demonstrates that you can't in general round-trip these functions.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -