📄 binomial_example_nag.cpp
字号:
// Copyright Paul A. 2007// Copyright John Maddock 2007// Use, modification and distribution are subject to the// Boost Software License, Version 1.0.// (See accompanying file LICENSE_1_0.txt// or copy at http://www.boost.org/LICENSE_1_0.txt)// Simple example of computing probabilities for a binomial random variable.// Replication of source nag_binomial_dist (g01bjc).// Shows how to replace NAG C library calls by Boost Math Toolkit C++ calls.// Note that the default policy does not replicate the way that NAG// library calls handle 'bad' arguments, but you can define policies that do,// as well as other policies that may suit your application even better.// See the examples of changing default policies for details.#include <boost/math/distributions/binomial.hpp>#include <iostream> using std::cout; using std::endl; using std::ios; using std::showpoint;#include <iomanip> using std::fixed; using std::setw;int main(){ cout << "Using the binomial distribution to replicate a NAG library call." << endl; using boost::math::binomial_distribution; // This replicates the computation of the examples of using nag-binomial_dist // using g01bjc in section g01 Somple Calculations on Statistical Data. // http://www.nag.co.uk/numeric/cl/manual/pdf/G01/g01bjc.pdf // Program results section 8.3 page 3.g01bjc.3 //8.2. Program Data //g01bjc Example Program Data //4 0.50 2 : n, p, k //19 0.44 13 //100 0.75 67 //2000 0.33 700 //8.3. Program Results //g01bjc Example Program Results //n p k plek pgtk peqk //4 0.500 2 0.68750 0.31250 0.37500 //19 0.440 13 0.99138 0.00862 0.01939 //100 0.750 67 0.04460 0.95540 0.01700 //2000 0.330 700 0.97251 0.02749 0.00312 cout.setf(ios::showpoint); // Trailing zeros to show significant decimal digits. cout.precision(5); // Might calculate this from trials in distribution? cout << fixed; // Binomial distribution. // Note that cdf(dist, k) is equivalent to NAG library plek probability of <= k // cdf(complement(dist, k)) is equivalent to NAG library pgtk probability of > k // pdf(dist, k) is equivalent to NAG library peqk probability of == k cout << " n p k plek pgtk peqk " << endl; binomial_distribution<>my_dist(4, 0.5); cout << setw(4) << (int)my_dist.trials() << " " << my_dist.success_fraction() << " " << 2 << " " << cdf(my_dist, 2) << " " << cdf(complement(my_dist, 2)) << " " << pdf(my_dist, 2) << endl; binomial_distribution<>two(19, 0.440); cout << setw(4) << (int)two.trials() << " " << two.success_fraction() << " " << 13 << " " << cdf(two, 13) << " " << cdf(complement(two, 13)) << " " << pdf(two, 13) << endl; binomial_distribution<>three(100, 0.750); cout << setw(4) << (int)three.trials() << " " << three.success_fraction() << " " << 67 << " " << cdf(three, 67) << " " << cdf(complement(three, 67)) << " " << pdf(three, 67) << endl; binomial_distribution<>four(2000, 0.330); cout << setw(4) << (int)four.trials() << " " << four.success_fraction() << " " << 700 << " " << cdf(four, 700) << " " << cdf(complement(four, 700)) << " " << pdf(four, 700) << endl; return 0;} // int main()/*Example of using the binomial distribution to replicate a NAG library call. n p k plek pgtk peqk 4 0.50000 2 0.68750 0.31250 0.37500 19 0.44000 13 0.99138 0.00862 0.01939 100 0.75000 67 0.04460 0.95540 0.017002000 0.33000 700 0.97251 0.02749 0.00312 */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -