⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 binomial_example_nag.cpp

📁 Boost provides free peer-reviewed portable C++ source libraries. We emphasize libraries that work
💻 CPP
字号:
// Copyright Paul A. 2007// Copyright John Maddock 2007// Use, modification and distribution are subject to the// Boost Software License, Version 1.0.// (See accompanying file LICENSE_1_0.txt// or copy at http://www.boost.org/LICENSE_1_0.txt)// Simple example of computing probabilities for a binomial random variable.// Replication of source nag_binomial_dist (g01bjc).// Shows how to replace NAG C library calls by Boost Math Toolkit C++ calls.// Note that the default policy does not replicate the way that NAG// library calls handle 'bad' arguments, but you can define policies that do,// as well as other policies that may suit your application even better.// See the examples of changing default policies for details.#include <boost/math/distributions/binomial.hpp>#include <iostream>  using std::cout; using std::endl; using std::ios; using std::showpoint;#include <iomanip>  using std::fixed; using std::setw;int main(){  cout << "Using the binomial distribution to replicate a NAG library call." << endl;  using boost::math::binomial_distribution;  // This replicates the computation of the examples of using nag-binomial_dist  // using g01bjc in section g01 Somple Calculations on Statistical Data.  // http://www.nag.co.uk/numeric/cl/manual/pdf/G01/g01bjc.pdf  // Program results section 8.3 page 3.g01bjc.3    //8.2. Program Data    //g01bjc Example Program Data    //4 0.50 2 : n, p, k    //19 0.44 13    //100 0.75 67    //2000 0.33 700    //8.3. Program Results    //g01bjc Example Program Results    //n p k plek pgtk peqk    //4 0.500 2 0.68750 0.31250 0.37500    //19 0.440 13 0.99138 0.00862 0.01939    //100 0.750 67 0.04460 0.95540 0.01700    //2000 0.330 700 0.97251 0.02749 0.00312  cout.setf(ios::showpoint); // Trailing zeros to show significant decimal digits.  cout.precision(5); // Might calculate this from trials in distribution?  cout << fixed;  //  Binomial distribution.  // Note  that  cdf(dist, k) is equivalent to NAG library plek probability of <= k  // cdf(complement(dist, k)) is equivalent to NAG library pgtk probability of > k  //             pdf(dist, k) is equivalent to NAG library peqk probability of == k  cout << " n        p     k     plek     pgtk     peqk " << endl;  binomial_distribution<>my_dist(4, 0.5);  cout << setw(4) << (int)my_dist.trials() << "  " << my_dist.success_fraction()  << "   " << 2 << "  " << cdf(my_dist, 2) << "  "  << cdf(complement(my_dist, 2)) << "  " << pdf(my_dist, 2) << endl;  binomial_distribution<>two(19, 0.440);  cout << setw(4) << (int)two.trials() <<  "  "  << two.success_fraction()    << "  " << 13 << "  " << cdf(two, 13) << "  "    << cdf(complement(two, 13)) << "  " << pdf(two, 13) << endl;  binomial_distribution<>three(100, 0.750);  cout << setw(4) << (int)three.trials() << "  " << three.success_fraction()    << "  " << 67 << "  " << cdf(three, 67) << "  " << cdf(complement(three, 67))    << "  " << pdf(three, 67) << endl;  binomial_distribution<>four(2000, 0.330);  cout << setw(4) << (int)four.trials() <<  "  "  << four.success_fraction()  << " " << 700 << "  "    << cdf(four, 700) << "  " << cdf(complement(four, 700))    << "  " << pdf(four, 700) << endl;  return 0;} // int main()/*Example of using the binomial distribution to replicate a NAG library call. n        p     k     plek     pgtk     peqk   4  0.50000   2  0.68750  0.31250  0.37500  19  0.44000  13  0.99138  0.00862  0.01939 100  0.75000  67  0.04460  0.95540  0.017002000  0.33000 700  0.97251  0.02749  0.00312 */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -