📄 hso3.hpp
字号:
/********************************************************************************************//* *//* HSO3.hpp header file *//* *//* This file is not currently part of the Boost library. It is simply an example of the use *//* quaternions can be put to. Hopefully it will be useful too. *//* *//* This file provides tools to convert between quaternions and R^3 rotation matrices. *//* *//********************************************************************************************/// (C) Copyright Hubert Holin 2001.// Distributed under the Boost Software License, Version 1.0. (See// accompanying file LICENSE_1_0.txt or copy at// http://www.boost.org/LICENSE_1_0.txt)#ifndef TEST_HSO3_HPP#define TEST_HSO3_HPP#include <algorithm>#if defined(__GNUC__) && (__GNUC__ < 3)#include <boost/limits.hpp>#else#include <limits>#endif#include <stdexcept>#include <string>#include <boost/math/quaternion.hpp>#if defined(__GNUC__) && (__GNUC__ < 3)// gcc 2.x ignores function scope using declarations, put them here instead:using namespace ::std;using namespace ::boost::math;#endiftemplate<typename TYPE_FLOAT>struct R3_matrix{ TYPE_FLOAT a11, a12, a13; TYPE_FLOAT a21, a22, a23; TYPE_FLOAT a31, a32, a33;};// Note: the input quaternion need not be of norm 1 for the following functiontemplate<typename TYPE_FLOAT>R3_matrix<TYPE_FLOAT> quaternion_to_R3_rotation(::boost::math::quaternion<TYPE_FLOAT> const & q){ using ::std::numeric_limits; TYPE_FLOAT a = q.R_component_1(); TYPE_FLOAT b = q.R_component_2(); TYPE_FLOAT c = q.R_component_3(); TYPE_FLOAT d = q.R_component_4(); TYPE_FLOAT aa = a*a; TYPE_FLOAT ab = a*b; TYPE_FLOAT ac = a*c; TYPE_FLOAT ad = a*d; TYPE_FLOAT bb = b*b; TYPE_FLOAT bc = b*c; TYPE_FLOAT bd = b*d; TYPE_FLOAT cc = c*c; TYPE_FLOAT cd = c*d; TYPE_FLOAT dd = d*d; TYPE_FLOAT norme_carre = aa+bb+cc+dd; if (norme_carre <= numeric_limits<TYPE_FLOAT>::epsilon()) { ::std::string error_reporting("Argument to quaternion_to_R3_rotation is too small!"); ::std::underflow_error bad_argument(error_reporting); throw(bad_argument); } R3_matrix<TYPE_FLOAT> out_matrix; out_matrix.a11 = (aa+bb-cc-dd)/norme_carre; out_matrix.a12 = 2*(-ad+bc)/norme_carre; out_matrix.a13 = 2*(ac+bd)/norme_carre; out_matrix.a21 = 2*(ad+bc)/norme_carre; out_matrix.a22 = (aa-bb+cc-dd)/norme_carre; out_matrix.a23 = 2*(-ab+cd)/norme_carre; out_matrix.a31 = 2*(-ac+bd)/norme_carre; out_matrix.a32 = 2*(ab+cd)/norme_carre; out_matrix.a33 = (aa-bb-cc+dd)/norme_carre; return(out_matrix);} template<typename TYPE_FLOAT> void find_invariant_vector( R3_matrix<TYPE_FLOAT> const & rot, TYPE_FLOAT & x, TYPE_FLOAT & y, TYPE_FLOAT & z) { using ::std::sqrt; using ::std::numeric_limits; TYPE_FLOAT b11 = rot.a11 - static_cast<TYPE_FLOAT>(1); TYPE_FLOAT b12 = rot.a12; TYPE_FLOAT b13 = rot.a13; TYPE_FLOAT b21 = rot.a21; TYPE_FLOAT b22 = rot.a22 - static_cast<TYPE_FLOAT>(1); TYPE_FLOAT b23 = rot.a23; TYPE_FLOAT b31 = rot.a31; TYPE_FLOAT b32 = rot.a32; TYPE_FLOAT b33 = rot.a33 - static_cast<TYPE_FLOAT>(1); TYPE_FLOAT minors[9] = { b11*b22-b12*b21, b11*b23-b13*b21, b12*b23-b13*b22, b11*b32-b12*b31, b11*b33-b13*b31, b12*b33-b13*b32, b21*b32-b22*b31, b21*b33-b23*b31, b22*b33-b23*b32 }; TYPE_FLOAT * where = ::std::max_element(minors, minors+9); TYPE_FLOAT det = *where; if (det <= numeric_limits<TYPE_FLOAT>::epsilon()) { ::std::string error_reporting("Underflow error in find_invariant_vector!"); ::std::underflow_error processing_error(error_reporting); throw(processing_error); } switch (where-minors) { case 0: z = static_cast<TYPE_FLOAT>(1); x = (-b13*b22+b12*b23)/det; y = (-b11*b23+b13*b21)/det; break; case 1: y = static_cast<TYPE_FLOAT>(1); x = (-b12*b23+b13*b22)/det; z = (-b11*b22+b12*b21)/det; break; case 2: x = static_cast<TYPE_FLOAT>(1); y = (-b11*b23+b13*b21)/det; z = (-b12*b21+b11*b22)/det; break; case 3: z = static_cast<TYPE_FLOAT>(1); x = (-b13*b32+b12*b33)/det; y = (-b11*b33+b13*b31)/det; break; case 4: y = static_cast<TYPE_FLOAT>(1); x = (-b12*b33+b13*b32)/det; z = (-b11*b32+b12*b31)/det; break; case 5: x = static_cast<TYPE_FLOAT>(1); y = (-b11*b33+b13*b31)/det; z = (-b12*b31+b11*b32)/det; break; case 6: z = static_cast<TYPE_FLOAT>(1); x = (-b23*b32+b22*b33)/det; y = (-b21*b33+b23*b31)/det; break; case 7: y = static_cast<TYPE_FLOAT>(1); x = (-b22*b33+b23*b32)/det; z = (-b21*b32+b22*b31)/det; break; case 8: x = static_cast<TYPE_FLOAT>(1); y = (-b21*b33+b23*b31)/det; z = (-b22*b31+b21*b32)/det; break; default: ::std::string error_reporting("Impossible condition in find_invariant_vector"); ::std::logic_error processing_error(error_reporting); throw(processing_error); break; } TYPE_FLOAT vecnorm = sqrt(x*x+y*y+z*z); if (vecnorm <= numeric_limits<TYPE_FLOAT>::epsilon()) { ::std::string error_reporting("Overflow error in find_invariant_vector!"); ::std::overflow_error processing_error(error_reporting); throw(processing_error); } x /= vecnorm; y /= vecnorm; z /= vecnorm; } template<typename TYPE_FLOAT> void find_orthogonal_vector( TYPE_FLOAT x, TYPE_FLOAT y,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -