⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hso3.hpp

📁 Boost provides free peer-reviewed portable C++ source libraries. We emphasize libraries that work
💻 HPP
📖 第 1 页 / 共 2 页
字号:
/********************************************************************************************//*                                                                                          *//*                                HSO3.hpp header file                                      *//*                                                                                          *//* This file is not currently part of the Boost library. It is simply an example of the use *//* quaternions can be put to. Hopefully it will be useful too.                              *//*                                                                                          *//* This file provides tools to convert between quaternions and R^3 rotation matrices.       *//*                                                                                          *//********************************************************************************************///  (C) Copyright Hubert Holin 2001.//  Distributed under the Boost Software License, Version 1.0. (See//  accompanying file LICENSE_1_0.txt or copy at//  http://www.boost.org/LICENSE_1_0.txt)#ifndef TEST_HSO3_HPP#define TEST_HSO3_HPP#include <algorithm>#if    defined(__GNUC__) && (__GNUC__ < 3)#include <boost/limits.hpp>#else#include <limits>#endif#include <stdexcept>#include <string>#include <boost/math/quaternion.hpp>#if    defined(__GNUC__) && (__GNUC__ < 3)// gcc 2.x ignores function scope using declarations, put them here instead:using    namespace ::std;using    namespace ::boost::math;#endiftemplate<typename TYPE_FLOAT>struct  R3_matrix{    TYPE_FLOAT a11, a12, a13;    TYPE_FLOAT a21, a22, a23;    TYPE_FLOAT a31, a32, a33;};// Note:    the input quaternion need not be of norm 1 for the following functiontemplate<typename TYPE_FLOAT>R3_matrix<TYPE_FLOAT>    quaternion_to_R3_rotation(::boost::math::quaternion<TYPE_FLOAT> const & q){    using    ::std::numeric_limits;        TYPE_FLOAT    a = q.R_component_1();    TYPE_FLOAT    b = q.R_component_2();    TYPE_FLOAT    c = q.R_component_3();    TYPE_FLOAT    d = q.R_component_4();        TYPE_FLOAT    aa = a*a;    TYPE_FLOAT    ab = a*b;    TYPE_FLOAT    ac = a*c;    TYPE_FLOAT    ad = a*d;    TYPE_FLOAT    bb = b*b;    TYPE_FLOAT    bc = b*c;    TYPE_FLOAT    bd = b*d;    TYPE_FLOAT    cc = c*c;    TYPE_FLOAT    cd = c*d;    TYPE_FLOAT    dd = d*d;        TYPE_FLOAT    norme_carre = aa+bb+cc+dd;        if    (norme_carre <= numeric_limits<TYPE_FLOAT>::epsilon())    {        ::std::string            error_reporting("Argument to quaternion_to_R3_rotation is too small!");        ::std::underflow_error   bad_argument(error_reporting);                throw(bad_argument);    }        R3_matrix<TYPE_FLOAT>    out_matrix;        out_matrix.a11 = (aa+bb-cc-dd)/norme_carre;    out_matrix.a12 = 2*(-ad+bc)/norme_carre;    out_matrix.a13 = 2*(ac+bd)/norme_carre;    out_matrix.a21 = 2*(ad+bc)/norme_carre;    out_matrix.a22 = (aa-bb+cc-dd)/norme_carre;    out_matrix.a23 = 2*(-ab+cd)/norme_carre;    out_matrix.a31 = 2*(-ac+bd)/norme_carre;    out_matrix.a32 = 2*(ab+cd)/norme_carre;    out_matrix.a33 = (aa-bb-cc+dd)/norme_carre;        return(out_matrix);}    template<typename TYPE_FLOAT>    void    find_invariant_vector(  R3_matrix<TYPE_FLOAT> const & rot,                                    TYPE_FLOAT & x,                                    TYPE_FLOAT & y,                                    TYPE_FLOAT & z)    {        using    ::std::sqrt;                using    ::std::numeric_limits;                TYPE_FLOAT    b11 = rot.a11 - static_cast<TYPE_FLOAT>(1);        TYPE_FLOAT    b12 = rot.a12;        TYPE_FLOAT    b13 = rot.a13;        TYPE_FLOAT    b21 = rot.a21;        TYPE_FLOAT    b22 = rot.a22 - static_cast<TYPE_FLOAT>(1);        TYPE_FLOAT    b23 = rot.a23;        TYPE_FLOAT    b31 = rot.a31;        TYPE_FLOAT    b32 = rot.a32;        TYPE_FLOAT    b33 = rot.a33 - static_cast<TYPE_FLOAT>(1);                TYPE_FLOAT    minors[9] =        {            b11*b22-b12*b21,            b11*b23-b13*b21,            b12*b23-b13*b22,            b11*b32-b12*b31,            b11*b33-b13*b31,            b12*b33-b13*b32,            b21*b32-b22*b31,            b21*b33-b23*b31,            b22*b33-b23*b32        };                TYPE_FLOAT *        where = ::std::max_element(minors, minors+9);                TYPE_FLOAT          det = *where;                if    (det <= numeric_limits<TYPE_FLOAT>::epsilon())        {            ::std::string            error_reporting("Underflow error in find_invariant_vector!");            ::std::underflow_error   processing_error(error_reporting);                        throw(processing_error);        }                switch    (where-minors)        {            case 0:                                z = static_cast<TYPE_FLOAT>(1);                                x = (-b13*b22+b12*b23)/det;                y = (-b11*b23+b13*b21)/det;                                break;                            case 1:                                y = static_cast<TYPE_FLOAT>(1);                                x = (-b12*b23+b13*b22)/det;                z = (-b11*b22+b12*b21)/det;                                break;                            case 2:                                x = static_cast<TYPE_FLOAT>(1);                                y = (-b11*b23+b13*b21)/det;                z = (-b12*b21+b11*b22)/det;                                break;                            case 3:                                z = static_cast<TYPE_FLOAT>(1);                                x = (-b13*b32+b12*b33)/det;                y = (-b11*b33+b13*b31)/det;                                break;                            case 4:                                y = static_cast<TYPE_FLOAT>(1);                                x = (-b12*b33+b13*b32)/det;                z = (-b11*b32+b12*b31)/det;                                break;                            case 5:                                x = static_cast<TYPE_FLOAT>(1);                                y = (-b11*b33+b13*b31)/det;                z = (-b12*b31+b11*b32)/det;                                break;                            case 6:                                z = static_cast<TYPE_FLOAT>(1);                                x = (-b23*b32+b22*b33)/det;                y = (-b21*b33+b23*b31)/det;                                break;                            case 7:                                y = static_cast<TYPE_FLOAT>(1);                                x = (-b22*b33+b23*b32)/det;                z = (-b21*b32+b22*b31)/det;                                break;                            case 8:                                x = static_cast<TYPE_FLOAT>(1);                                y = (-b21*b33+b23*b31)/det;                z = (-b22*b31+b21*b32)/det;                                break;                            default:                                ::std::string        error_reporting("Impossible condition in find_invariant_vector");                ::std::logic_error   processing_error(error_reporting);                                throw(processing_error);                                break;        }                TYPE_FLOAT    vecnorm = sqrt(x*x+y*y+z*z);                if    (vecnorm <= numeric_limits<TYPE_FLOAT>::epsilon())        {            ::std::string            error_reporting("Overflow error in find_invariant_vector!");            ::std::overflow_error    processing_error(error_reporting);                        throw(processing_error);        }                x /= vecnorm;        y /= vecnorm;        z /= vecnorm;    }            template<typename TYPE_FLOAT>    void    find_orthogonal_vector( TYPE_FLOAT x,                                    TYPE_FLOAT y,

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -