⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 complex-tr1.qbk

📁 Boost provides free peer-reviewed portable C++ source libraries. We emphasize libraries that work
💻 QBK
字号:
[article Complex Number TR1 Algorithms    [quickbook 1.4]    [copyright 2005 John Maddock]    [purpose Complex number arithmetic]    [license        Distributed under the Boost Software License, Version 1.0.        (See accompanying file LICENSE_1_0.txt or copy at        [@http://www.boost.org/LICENSE_1_0.txt http://www.boost.org/LICENSE_1_0.txt])    ]    [authors [Maddock, John]]    [category math]    [last-revision $Date: 2006-12-29 11:08:32 +0000 (Fri, 29 Dec 2006) $]][def __effects [*Effects: ]][def __formula [*Formula: ]][def __exm1 '''<code>e<superscript>x</superscript> - 1</code>'''][def __ex '''<code>e<superscript>x</superscript></code>'''][def __te '''2&#x03B5;'''][template tr1[] [@http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf Technical Report on C++ Library Extensions]]This manual is also available in [@http://svn.boost.org/svn/boost/sandbox/pdf/math/release/complex-tr1.pdf printer friendly PDF format].[section:inverse_complex Complex Number Inverse Trigonometric Functions]The following complex number algorithms are the inverses of trigonometric functions currentlypresent in the C++ standard.  Equivalents to these functions are part of the C99 standard, andare part of the [tr1].[section:implementation Implementation and Accuracy]Although there are deceptively simple formulae available for all of these functions, a naiveimplementation that used these formulae would fail catastrophically for some inputvalues.  The Boost versions of these functions have been implemented using the methodologydescribed in "Implementing the Complex Arcsine and Arccosine Functions Using Exception Handling"by T. E. Hull Thomas F. Fairgrieve and Ping Tak Peter Tang, ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.  This means that the functions are well defined over the entirecomplex number range, and produce accurate values even at the extremes of that range, where as a naiveformula would cause overflow or underflow to occur during the calculation, even though the result is  actually a representable value.  The maximum theoretical relative error for all of these functions is less than 9.5E for every machine-representable point in the complex plane.  Please refer to comments in the header files themselves and to the above mentioned paper for more informationon the implementation methodology.[endsect][section:asin asin][h4 Header:]   #include <boost/math/complex/asin.hpp>[h4 Synopsis:]   template<class T>    std::complex<T> asin(const std::complex<T>& z);   __effects returns the inverse sine of the complex number z.__formula [$../../images/asin.png][endsect][section:acos acos][h4 Header:]   #include <boost/math/complex/acos.hpp>[h4 Synopsis:]   template<class T>    std::complex<T> acos(const std::complex<T>& z);   __effects returns the inverse cosine of the complex number z.__formula [$../../images/acos.png][endsect][section:atan atan][h4 Header:]   #include <boost/math/complex/atan.hpp>[h4 Synopsis:]   template<class T>    std::complex<T> atan(const std::complex<T>& z);   __effects returns the inverse tangent of the complex number z.__formula [$../../images/atan.png][endsect][section:asinh asinh][h4 Header:]   #include <boost/math/complex/asinh.hpp>[h4 Synopsis:]   template<class T>    std::complex<T> asinh(const std::complex<T>& z);   __effects returns the inverse hyperbolic sine of the complex number z.__formula [$../../images/asinh.png][endsect][section:acosh acosh][h4 Header:]   #include <boost/math/complex/acosh.hpp>[h4 Synopsis:]   template<class T>    std::complex<T> acosh(const std::complex<T>& z);   __effects returns the inverse hyperbolic cosine of the complex number z.__formula [$../../images/acosh.png][endsect][section:atanh atanh][h4 Header:]   #include <boost/math/complex/atanh.hpp>[h4 Synopsis:]   template<class T>    std::complex<T> atanh(const std::complex<T>& z);   __effects returns the inverse hyperbolic tangent of the complex number z.__formula [$../../images/atanh.png][endsect][section History]* 2005/12/17: Added support for platforms with no meaningful numeric_limits<>::infinity().* 2005/12/01: Initial version, added as part of the TR1 library.[endsect][endsect]

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -