⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tr1_ref.qbk

📁 Boost provides free peer-reviewed portable C++ source libraries. We emphasize libraries that work
💻 QBK
字号:
[section:tr1_ref TR1 C Functions Quick Reference][h4 Supported TR1 Functions]   namespace boost{ namespace math{ namespace tr1{ extern "C"{         // [5.2.1.1] associated Laguerre polynomials:   double assoc_laguerre(unsigned n, unsigned m, double x);   float assoc_laguerref(unsigned n, unsigned m, float x);   long double assoc_laguerrel(unsigned n, unsigned m, long double x);   // [5.2.1.2] associated Legendre functions:   double assoc_legendre(unsigned l, unsigned m, double x);   float assoc_legendref(unsigned l, unsigned m, float x);   long double assoc_legendrel(unsigned l, unsigned m, long double x);   // [5.2.1.3] beta function:   double beta(double x, double y);   float betaf(float x, float y);   long double betal(long double x, long double y);   // [5.2.1.4] (complete) elliptic integral of the first kind:   double comp_ellint_1(double k);   float comp_ellint_1f(float k);   long double comp_ellint_1l(long double k);   // [5.2.1.5] (complete) elliptic integral of the second kind:   double comp_ellint_2(double k);   float comp_ellint_2f(float k);   long double comp_ellint_2l(long double k);   // [5.2.1.6] (complete) elliptic integral of the third kind:   double comp_ellint_3(double k, double nu);   float comp_ellint_3f(float k, float nu);   long double comp_ellint_3l(long double k, long double nu);   // [5.2.1.8] regular modified cylindrical Bessel functions:   double cyl_bessel_i(double nu, double x);   float cyl_bessel_if(float nu, float x);   long double cyl_bessel_il(long double nu, long double x);   // [5.2.1.9] cylindrical Bessel functions (of the first kind):   double cyl_bessel_j(double nu, double x);   float cyl_bessel_jf(float nu, float x);   long double cyl_bessel_jl(long double nu, long double x);   // [5.2.1.10] irregular modified cylindrical Bessel functions:   double cyl_bessel_k(double nu, double x);   float cyl_bessel_kf(float nu, float x);   long double cyl_bessel_kl(long double nu, long double x);   // [5.2.1.11] cylindrical Neumann functions;   // cylindrical Bessel functions (of the second kind):   double cyl_neumann(double nu, double x);   float cyl_neumannf(float nu, float x);   long double cyl_neumannl(long double nu, long double x);   // [5.2.1.12] (incomplete) elliptic integral of the first kind:   double ellint_1(double k, double phi);   float ellint_1f(float k, float phi);   long double ellint_1l(long double k, long double phi);   // [5.2.1.13] (incomplete) elliptic integral of the second kind:   double ellint_2(double k, double phi);   float ellint_2f(float k, float phi);   long double ellint_2l(long double k, long double phi);   // [5.2.1.14] (incomplete) elliptic integral of the third kind:   double ellint_3(double k, double nu, double phi);   float ellint_3f(float k, float nu, float phi);   long double ellint_3l(long double k, long double nu, long double phi);   // [5.2.1.15] exponential integral:   double expint(double x);   float expintf(float x);   long double expintl(long double x);   // [5.2.1.16] Hermite polynomials:   double hermite(unsigned n, double x);   float hermitef(unsigned n, float x);   long double hermitel(unsigned n, long double x);   // [5.2.1.18] Laguerre polynomials:   double laguerre(unsigned n, double x);   float laguerref(unsigned n, float x);   long double laguerrel(unsigned n, long double x);   // [5.2.1.19] Legendre polynomials:   double legendre(unsigned l, double x);   float legendref(unsigned l, float x);   long double legendrel(unsigned l, long double x);   // [5.2.1.20] Riemann zeta function:   double riemann_zeta(double);   float riemann_zetaf(float);   long double riemann_zetal(long double);   // [5.2.1.21] spherical Bessel functions (of the first kind):   double sph_bessel(unsigned n, double x);   float sph_besself(unsigned n, float x);   long double sph_bessell(unsigned n, long double x);   // [5.2.1.22] spherical associated Legendre functions:   double sph_legendre(unsigned l, unsigned m, double theta);   float sph_legendref(unsigned l, unsigned m, float theta);   long double sph_legendrel(unsigned l, unsigned m, long double theta);   // [5.2.1.23] spherical Neumann functions;   // spherical Bessel functions (of the second kind):   double sph_neumann(unsigned n, double x);   float sph_neumannf(unsigned n, float x);   long double sph_neumannl(unsigned n, long double x);      }}}} // namespaces   In addition sufficient additional overloads of the `double` versions of theabove functions are provided, so that calling the function with any mixtureof `float`, `double`, `long double`, or /integer/ arguments is supported, with thereturn type determined by the __arg_pomotion_rules.   For example:   expintf(2.0f);  // float version, returns float.   expint(2.0f);   // also calls the float version and returns float.   expint(2.0);    // double version, returns double.   expintl(2.0L);  // long double version, returns a long double.   expint(2.0L);   // also calls the long double version.   expint(2);      // integer argument is treated as a double, returns double.[h4 Quick Reference]   // [5.2.1.1] associated Laguerre polynomials:   double assoc_laguerre(unsigned n, unsigned m, double x);   float assoc_laguerref(unsigned n, unsigned m, float x);   long double assoc_laguerrel(unsigned n, unsigned m, long double x);   The assoc_laguerre functions return:[equation laguerre_1]See also __laguerre for the full template (header only) version of this function.   // [5.2.1.2] associated Legendre functions:   double assoc_legendre(unsigned l, unsigned m, double x);   float assoc_legendref(unsigned l, unsigned m, float x);   long double assoc_legendrel(unsigned l, unsigned m, long double x);The assoc_legendre functions return:[equation legendre_1b]See also __legendre for the full template (header only) version of this function.   // [5.2.1.3] beta function:   double beta(double x, double y);   float betaf(float x, float y);   long double betal(long double x, long double y);   Returns the beta function of /x/ and /y/:[equation beta1]See also __beta for the full template (header only) version of this function.   // [5.2.1.4] (complete) elliptic integral of the first kind:   double comp_ellint_1(double k);   float comp_ellint_1f(float k);   long double comp_ellint_1l(long double k);Returns the complete elliptic integral of the first kind of /k/:[equation ellint6]See also __ellint_1 for the full template (header only) version of this function.   // [5.2.1.5] (complete) elliptic integral of the second kind:   double comp_ellint_2(double k);   float comp_ellint_2f(float k);   long double comp_ellint_2l(long double k);Returns the complete elliptic integral of the second kind of /k/:[equation ellint7]See also __ellint_2 for the full template (header only) version of this function.   // [5.2.1.6] (complete) elliptic integral of the third kind:   double comp_ellint_3(double k, double nu);   float comp_ellint_3f(float k, float nu);   long double comp_ellint_3l(long double k, long double nu);Returns the complete elliptic integral of the third kind of /k/ and /nu/:[equation ellint8]See also __ellint_3 for the full template (header only) version of this function.   // [5.2.1.8] regular modified cylindrical Bessel functions:   double cyl_bessel_i(double nu, double x);   float cyl_bessel_if(float nu, float x);   long double cyl_bessel_il(long double nu, long double x);Returns the modified bessel function of the first kind of /nu/ and /x/:[equation mbessel2]See also __cyl_bessel_i for the full template (header only) version of this function.   // [5.2.1.9] cylindrical Bessel functions (of the first kind):   double cyl_bessel_j(double nu, double x);   float cyl_bessel_jf(float nu, float x);   long double cyl_bessel_jl(long double nu, long double x);Returns the bessel function of the first kind of /nu/ and /x/:[equation bessel2]See also __cyl_bessel_j for the full template (header only) version of this function.   // [5.2.1.10] irregular modified cylindrical Bessel functions:   double cyl_bessel_k(double nu, double x);   float cyl_bessel_kf(float nu, float x);   long double cyl_bessel_kl(long double nu, long double x);Returns the modified bessel function of the second kind of /nu/ and /x/:[equation mbessel3]See also __cyl_bessel_k for the full template (header only) version of this function.   // [5.2.1.11] cylindrical Neumann functions;   // cylindrical Bessel functions (of the second kind):   double cyl_neumann(double nu, double x);   float cyl_neumannf(float nu, float x);   long double cyl_neumannl(long double nu, long double x);Returns the bessel function of the second kind (Neumann function) of /nu/ and /x/:[equation bessel3]See also __cyl_neumann for the full template (header only) version of this function.   // [5.2.1.12] (incomplete) elliptic integral of the first kind:   double ellint_1(double k, double phi);   float ellint_1f(float k, float phi);   long double ellint_1l(long double k, long double phi);Returns the incomplete elliptic integral of the first kind of /k/ and /phi/:[equation ellint2]See also __ellint_1 for the full template (header only) version of this function.   // [5.2.1.13] (incomplete) elliptic integral of the second kind:   double ellint_2(double k, double phi);   float ellint_2f(float k, float phi);   long double ellint_2l(long double k, long double phi);Returns the incomplete elliptic integral of the second kind of /k/ and /phi/:[equation ellint3]See also __ellint_2 for the full template (header only) version of this function.   // [5.2.1.14] (incomplete) elliptic integral of the third kind:   double ellint_3(double k, double nu, double phi);   float ellint_3f(float k, float nu, float phi);   long double ellint_3l(long double k, long double nu, long double phi);Returns the incomplete elliptic integral of the third kind of /k/, /nu/ and /phi/:[equation ellint4]See also __ellint_3 for the full template (header only) version of this function.   // [5.2.1.15] exponential integral:   double expint(double x);   float expintf(float x);   long double expintl(long double x);Returns the exponential integral Ei of /x/:[equation expint_i_1]See also __expint for the full template (header only) version of this function.   // [5.2.1.16] Hermite polynomials:   double hermite(unsigned n, double x);   float hermitef(unsigned n, float x);   long double hermitel(unsigned n, long double x);Returns the n'th Hermite polynomial of /x/:[equation hermite_0]See also __hermite for the full template (header only) version of this function.   // [5.2.1.18] Laguerre polynomials:   double laguerre(unsigned n, double x);   float laguerref(unsigned n, float x);   long double laguerrel(unsigned n, long double x);Returns the n'th Laguerre polynomial of /x/:[equation laguerre_0]See also __laguerre for the full template (header only) version of this function.   // [5.2.1.19] Legendre polynomials:   double legendre(unsigned l, double x);   float legendref(unsigned l, float x);   long double legendrel(unsigned l, long double x);Returns the l'th Legendre polynomial of /x/:[equation legendre_0]See also __legendre for the full template (header only) version of this function.   // [5.2.1.20] Riemann zeta function:   double riemann_zeta(double);   float riemann_zetaf(float);   long double riemann_zetal(long double);Returns the Riemann Zeta function of /x/:[equation zeta1]See also __zeta for the full template (header only) version of this function.   // [5.2.1.21] spherical Bessel functions (of the first kind):   double sph_bessel(unsigned n, double x);   float sph_besself(unsigned n, float x);   long double sph_bessell(unsigned n, long double x);Returns the spherical Bessel function of the first kind of /x/ j[sub n](x):[equation sbessel2]See also __sph_bessel for the full template (header only) version of this function.   // [5.2.1.22] spherical associated Legendre functions:   double sph_legendre(unsigned l, unsigned m, double theta);   float sph_legendref(unsigned l, unsigned m, float theta);   long double sph_legendrel(unsigned l, unsigned m, long double theta);   Returns the spherical associated Legendre function of /l/, /m/ and /theta/:[equation spherical_3]See also __spherical_harmonic for the full template (header only) version of this function.   // [5.2.1.23] spherical Neumann functions;   // spherical Bessel functions (of the second kind):   double sph_neumann(unsigned n, double x);   float sph_neumannf(unsigned n, float x);   long double sph_neumannl(unsigned n, long double x);Returns the spherical Neumann function of /x/ y[sub n](x):[equation sbessel2]See also __sph_bessel for the full template (header only) version of this function.[h4 Currently Unsupported TR1 Functions]   // [5.2.1.7] confluent hypergeometric functions:   double conf_hyperg(double a, double c, double x);   float conf_hypergf(float a, float c, float x);   long double conf_hypergl(long double a, long double c, long double x);   // [5.2.1.17] hypergeometric functions:   double hyperg(double a, double b, double c, double x);   float hypergf(float a, float b, float c, float x);   long double hypergl(long double a, long double b, long double c,   long double x);   [note Thes two functions are not implemented as they are not believedto be numerically stable.][endsect][/   Copyright 2008 John Maddock and Paul A. Bristow.  Distributed under the Boost Software License, Version 1.0.  (See accompanying file LICENSE_1_0.txt or copy at  http://www.boost.org/LICENSE_1_0.txt).]

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -