⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 legendre.qbk

📁 Boost provides free peer-reviewed portable C++ source libraries. We emphasize libraries that work
💻 QBK
字号:
[section:legendre Legendre (and Associated) Polynomials][h4 Synopsis]``#include <boost/math/special_functions/legendre.hpp>``   namespace boost{ namespace math{      template <class T>   ``__sf_result`` legendre_p(int n, T x);      template <class T, class ``__Policy``>   ``__sf_result`` legendre_p(int n, T x, const ``__Policy``&);      template <class T>   ``__sf_result`` legendre_p(int n, int m, T x);      template <class T, class ``__Policy``>   ``__sf_result`` legendre_p(int n, int m, T x, const ``__Policy``&);      template <class T>   ``__sf_result`` legendre_q(unsigned n, T x);      template <class T, class ``__Policy``>   ``__sf_result`` legendre_q(unsigned n, T x, const ``__Policy``&);      template <class T1, class T2, class T3>   ``__sf_result`` legendre_next(unsigned l, T1 x, T2 Pl, T3 Plm1);      template <class T1, class T2, class T3>   ``__sf_result`` legendre_next(unsigned l, unsigned m, T1 x, T2 Pl, T3 Plm1);      }} // namespaces   The return type of these functions is computed using the __arg_pomotion_rules:note than when there is a single template argument the result is the same type as that argument or `double` if the template argument is an integer type.[optional_policy][h4 Description]   template <class T>   ``__sf_result`` legendre_p(int l, T x);      template <class T, class ``__Policy``>   ``__sf_result`` legendre_p(int l, T x, const ``__Policy``&);   Returns the Legendre Polynomial of the first kind:[equation legendre_0]Requires -1 <= x <= 1, otherwise returns the result of __domain_error.Negative orders are handled via the reflection formula:P[sub -l-1](x) = P[sub l](x)The following graph illustrates the behaviour of the first few Legendre Polynomials:[graph legendre_p]      template <class T>   ``__sf_result`` legendre_p(int l, int m, T x);      template <class T, class ``__Policy``>   ``__sf_result`` legendre_p(int l, int m, T x, const ``__Policy``&);   Returns the associated Legendre polynomial of the first kind:[equation legendre_1]Requires -1 <= x <= 1, otherwise returns the result of __domain_error.Negative values of /l/ and /m/ are handled via the identity relations:[equation legendre_3][caution The definition of the associated Legendre polynomial used hereincludes a leading Condon-Shortley phase term of (-1)[super m].  Thismatches the definition given by Abramowitz and Stegun (8.6.6) and thatused by [@http://mathworld.wolfram.com/LegendrePolynomial.html Mathworld]and [@http://documents.wolfram.com/mathematica/functions/LegendreP Mathematica's LegendreP function].  However, uses in the literaturedo not always include this phase term, and strangely the specificationfor the associated Legendre function in the C++ TR1 (assoc_legendre) also omits it, in spite of stating that it uses Abramowitz and Stegun as the final arbiter on these matters.See: [@http://mathworld.wolfram.com/LegendrePolynomial.html Weisstein, Eric W. "Legendre Polynomial." From MathWorld--A Wolfram Web Resource].Abramowitz, M. and Stegun, I. A. (Eds.). "Legendre Functions" and "Orthogonal Polynomials." Ch. 22 in Chs. 8 and 22 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 331-339 and 771-802, 1972.  ]      template <class T>   ``__sf_result`` legendre_q(unsigned n, T x);      template <class T, class ``__Policy``>   ``__sf_result`` legendre_q(unsigned n, T x, const ``__Policy``&);   Returns the value of the Legendre polynomial that is the second solutionto the Legendre differential equation, for example:[equation legendre_2]Requires -1 <= x <= 1, otherwise __domain_error is called.The following graph illustrates the first few Legendre functions of thesecond kind:[graph legendre_q]      template <class T1, class T2, class T3>   ``__sf_result`` legendre_next(unsigned l, T1 x, T2 Pl, T3 Plm1);   Implements the three term recurrence relation for the Legendrepolynomials, this function can be used to create a sequence ofvalues evaluated at the same /x/, and for rising /l/.  This recurrencerelation holds for Legendre Polynomials of both the first and second kinds.[equation legendre_4]For example we could produce a vector of the first 10 polynomialvalues using:   double x = 0.5;  // Abscissa value   vector<double> v;   v.push_back(legendre_p(0, x)).push_back(legendre_p(1, x));   for(unsigned l = 1; l < 10; ++l)      v.push_back(legendre_next(l, x, v[l], v[l-1]));      Formally the arguments are:[variablelist[[l][The degree of the last polynomial calculated.]][[x][The abscissa value]][[Pl][The value of the polynomial evaluated at degree /l/.]][[Plm1][The value of the polynomial evaluated at degree /l-1/.]]]      template <class T1, class T2, class T3>   ``__sf_result`` legendre_next(unsigned l, unsigned m, T1 x, T2 Pl, T3 Plm1);Implements the three term recurrence relation for the Associated Legendrepolynomials, this function can be used to create a sequence ofvalues evaluated at the same /x/, and for rising /l/.[equation legendre_5]For example we could produce a vector of the first m+10 polynomialvalues using:   double x = 0.5;  // Abscissa value   int m = 10;      // order   vector<double> v;   v.push_back(legendre_p(m, m, x)).push_back(legendre_p(1 + m, m, x));   for(unsigned l = 1 + m; l < m + 10; ++l)      v.push_back(legendre_next(l, m, x, v[l], v[l-1]));      Formally the arguments are:[variablelist[[l][The degree of the last polynomial calculated.]][[m][The order of the Associated Polynomial.]][[x][The abscissa value]][[Pl][The value of the polynomial evaluated at degree /l/.]][[Plm1][The value of the polynomial evaluated at degree /l-1/.]]]   [h4 Accuracy]The following table shows peak errors (in units of epsilon) for various domains of input arguments.  Note that only results for the widest floating point type on the system are given as narrower types have __zero_error.[table Peak Errors In the Legendre P Function[[Significand Size] [Platform and Compiler] [Errors in range0 < l < 20]  [Errors in range20 < l < 120]][[53] [Win32, Visual C++ 8] [Peak=211 Mean=20]  [Peak=300 Mean=33]][[64] [SUSE Linux IA32, g++ 4.1] [Peak=70 Mean=10]  [Peak=700 Mean=60]][[64] [Red Hat Linux IA64, g++ 3.4.4] [Peak=70 Mean=10]  [Peak=700 Mean=60]][[113] [HPUX IA64, aCC A.06.06] [Peak=35 Mean=6]  [Peak=292 Mean=41]]][table Peak Errors In the Associated Legendre P Function[[Significand Size] [Platform and Compiler] [Errors in range0 < l < 20] ][[53] [Win32, Visual C++ 8] [Peak=1200 Mean=7]][[64] [SUSE Linux IA32, g++ 4.1] [Peak=80 Mean=5]][[64] [Red Hat Linux IA64, g++ 3.4.4] [Peak=80 Mean=5] ][[113] [HPUX IA64, aCC A.06.06] [Peak=42 Mean=4] ]][table Peak Errors In the Legendre Q Function[[Significand Size] [Platform and Compiler] [Errors in range0 < l < 20]  [Errors in range20 < l < 120]][[53] [Win32, Visual C++ 8] [Peak=50 Mean=7]  [Peak=4600 Mean=370]][[64] [SUSE Linux IA32, g++ 4.1] [Peak=51 Mean=8]  [Peak=6000 Mean=480]][[64] [Red Hat Linux IA64, g++ 3.4.4] [Peak=51 Mean=8]  [Peak=6000 Mean=480]][[113] [HPUX IA64, aCC A.06.06] [Peak=90 Mean=10]  [Peak=1700 Mean=140]]]Note that the worst errors occur when the order increases, values greater than~120 are very unlikely to produce sensible results, especially in the associatedpolynomial case when the degree is also large.  Further the relative errorsare likely to grow arbitrarily large when the function is very close to a root.No comparisons to other libraries are shown here: there appears to be only oneviable implementation method for these functions, the comparisons to otherlibraries that have been run show identical error rates to those given here.[h4 Testing]A mixture of spot tests of values calculated using functions.wolfram.com, and randomly generated test data areused: the test data was computed using[@http://shoup.net/ntl/doc/RR.txt NTL::RR] at 1000-bit precision.[h4 Implementation]These functions are implemented using the stable three termrecurrence relations.  These relations guarentee low absolute errorbut cannot guarentee low relative error near one of the roots of thepolynomials.[endsect][/section:beta_function The Beta Function][/   Copyright 2006 John Maddock and Paul A. Bristow.  Distributed under the Boost Software License, Version 1.0.  (See accompanying file LICENSE_1_0.txt or copy at  http://www.boost.org/LICENSE_1_0.txt).]

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -