⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 weibull.qbk

📁 Boost provides free peer-reviewed portable C++ source libraries. We emphasize libraries that work
💻 QBK
字号:
[section:weibull Weibull Distribution]``#include <boost/math/distributions/weibull.hpp>``   namespace boost{ namespace math{          template <class RealType = double,              class ``__Policy``   = ``__policy_class`` >   class weibull_distribution;      typedef weibull_distribution<> weibull;      template <class RealType, class ``__Policy``>   class weibull_distribution   {   public:      typedef RealType value_type;      typedef Policy   policy_type;      // Construct:      weibull_distribution(RealType shape, RealType scale = 1)      // Accessors:      RealType shape()const;      RealType scale()const;   };      }} // namespaces   The [@http://en.wikipedia.org/wiki/Weibull_distribution Weibull distribution]is a continuous distributionwith the [@http://en.wikipedia.org/wiki/Probability_density_function probability density function]:f(x; [alpha], [beta]) = ([alpha]\/[beta]) * (x \/ [beta])[super [alpha] - 1] * e[super -(x\/[beta])[super [alpha]]]For shape parameter [alpha][space] > 0, and scale parameter [beta][space] > 0, and x > 0.The Weibull distribution is often used in the field of failure analysis;in particular it can mimic distributions where the failure rate varies over time.If the failure rate is:* constant over time, then [alpha][space] = 1, suggests that items are failing from random events.* decreases over time, then [alpha][space] < 1, suggesting "infant mortality".* increases over time, then [alpha][space] > 1, suggesting "wear out" - more likely to fail as time goes by.The following graph illustrates how the PDF varies with the shape parameter [alpha]:[graph weibull_pdf1]While this graph illustrates how the PDF varies with the scale parameter [beta]:[graph weibull_pdf2][h4 Related distributions]When [alpha][space] = 3, the[@http://en.wikipedia.org/wiki/Weibull_distribution Weibull distribution] appears similar to the[@http://en.wikipedia.org/wiki/Normal_distribution normal distribution].When [alpha][space] = 1, the Weibull distribution reduces to the[@http://en.wikipedia.org/wiki/Exponential_distribution exponential distribution].The relationship of the types of extreme value distributions, of which the Weibull is but one, isdiscussed by[@http://www.worldscibooks.com/mathematics/p191.html Extreme Value Distributions, Theory and ApplicationsSamuel Kotz & Saralees Nadarajah].   [h4 Member Functions]   weibull_distribution(RealType shape, RealType scale = 1);   Constructs a [@http://en.wikipedia.org/wiki/Weibull_distribution Weibull distribution] with shape /shape/ and scale /scale/.Requires that the /shape/ and /scale/ parameters are both greater than zero, otherwise calls __domain_error.   RealType shape()const;   Returns the /shape/ parameter of this distribution.      RealType scale()const;      Returns the /scale/ parameter of this distribution.[h4 Non-member Accessors]All the [link math_toolkit.dist.dist_ref.nmp usual non-member accessor functions] that are generic to alldistributions are supported: __usual_accessors.The domain of the random variable is \[0, [infin]\].[h4 Accuracy]The Weibull distribution is implemented in terms of the standard library `log` and `exp` functions plus __expm1 and __log1pand as such should have very low error rates.[h4 Implementation]In the following table [alpha][space] is the shape parameter of the distribution, [beta][space] is it's scale parameter, /x/ is the random variate, /p/ is the probabilityand /q = 1-p/.[table[[Function][Implementation Notes]][[pdf][Using the relation: pdf = [alpha][beta][super -[alpha] ]x[super [alpha] - 1] e[super -(x/beta)[super alpha]] ]][[cdf][Using the relation: p = -__expm1(-(x\/[beta])[super [alpha]]) ]][[cdf complement][Using the relation: q = e[super -(x\/[beta])[super [alpha]]] ]][[quantile][Using the relation: x = [beta] * (-__log1p(-p))[super 1\/[alpha]] ]][[quantile from the complement][Using the relation: x = [beta] * (-log(q))[super 1\/[alpha]] ]][[mean][[beta] * [Gamma](1 + 1\/[alpha]) ]][[variance][[beta][super 2]([Gamma](1 + 2\/[alpha]) - [Gamma][super 2](1 + 1\/[alpha])) ]][[mode][[beta](([alpha] - 1) \/ [alpha])[super 1\/[alpha]] ]][[skewness][Refer to [@http://mathworld.wolfram.com/WeibullDistribution.html Weisstein, Eric W. "Weibull Distribution." From MathWorld--A Wolfram Web Resource.] ]][[kurtosis][Refer to [@http://mathworld.wolfram.com/WeibullDistribution.html Weisstein, Eric W. "Weibull Distribution." From MathWorld--A Wolfram Web Resource.] ]][[kurtosis excess][Refer to [@http://mathworld.wolfram.com/WeibullDistribution.html Weisstein, Eric W. "Weibull Distribution." From MathWorld--A Wolfram Web Resource.] ]]][h4 References]* [@http://en.wikipedia.org/wiki/Weibull_distribution ]* [@http://mathworld.wolfram.com/WeibullDistribution.html Weisstein, Eric W. "Weibull Distribution." From MathWorld--A Wolfram Web Resource.]* [@http://www.itl.nist.gov/div898/handbook/eda/section3/eda3668.htm Weibull in NIST Exploratory Data Analysis][endsect][/section:weibull Weibull][/   Copyright 2006 John Maddock and Paul A. Bristow.  Distributed under the Boost Software License, Version 1.0.  (See accompanying file LICENSE_1_0.txt or copy at  http://www.boost.org/LICENSE_1_0.txt).]

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -