⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 extreme_value.qbk

📁 Boost provides free peer-reviewed portable C++ source libraries. We emphasize libraries that work
💻 QBK
字号:
[section:extreme_dist Extreme Value Distribution]``#include <boost/math/distributions/extreme.hpp>``   template <class RealType = double,              class ``__Policy``   = ``__policy_class`` >   class extreme_value_distribution;   typedef extreme_value_distribution<> extreme_value;   template <class RealType, class ``__Policy``>   class extreme_value_distribution   {   public:      typedef RealType value_type;      extreme_value_distribution(RealType location = 0, RealType scale = 1);      RealType scale()const;      RealType location()const;   };There are various[@http://mathworld.wolfram.com/ExtremeValueDistribution.html extreme value distributions]: this implementation represents the maximum case,and is variously known as a Fisher-Tippett distribution, a log-Weibull distribution or a Gumbel distribution. Extreme value theory is important for assessing risk for highly unusual events,such as 100-year floods.More information can be found on the [@http://www.itl.nist.gov/div898/handbook/eda/section3/eda366g.htm NIST],[@http://en.wikipedia.org/wiki/Extreme_value_distribution Wikipedia],[@http://mathworld.wolfram.com/ExtremeValueDistribution.html Mathworld],and [@http://en.wikipedia.org/wiki/Extreme_value_theory Extreme value theory]websites.The relationship of the types of extreme value distributions, of which this is but one, isdiscussed by[@http://www.worldscibooks.com/mathematics/p191.html Extreme Value Distributions, Theory and ApplicationsSamuel Kotz & Saralees Nadarajah].The distribution has a PDF given by:f(x) = (1/scale) e[super -(x-location)/scale] e[super -e[super -(x-location)/scale]]Which in the standard case (scale = 1, location = 0) reduces to:f(x) = e[super -x]e[super -e[super -x]]The following graph illustrates how the PDF varies with the location parameter:[graph extreme_value_pdf1]And this graph illustrates how the PDF varies with the shape parameter:[graph extreme_value_pdf2][h4 Member Functions]   extreme_value_distribution(RealType location = 0, RealType scale = 1);   Constructs an Extreme Value distribution with the specified location and scaleparameters.Requires `scale > 0`, otherwise calls __domain_error.   RealType location()const;   Returns the location parameter of the distribution.      RealType scale()const;   Returns the scale parameter of the distribution.   [h4 Non-member Accessors]All the [link math_toolkit.dist.dist_ref.nmp usual non-member accessor functions]that are generic to all distributions are supported: __usual_accessors.The domain of the random parameter is \[-[infin], +[infin]\].[h4 Accuracy]The extreme value distribution is implemented in terms of the standard library `exp` and `log` functions and as such should have very lowerror rates.[h4 Implementation]In the following table:/a/ is the location parameter, /b/ is the scale parameter,/x/ is the random variate, /p/ is the probability and /q = 1-p/.[table[[Function][Implementation Notes]][[pdf][Using the relation: pdf = exp((a-x)/b) * exp(-exp((a-x)/b)) / b ]][[cdf][Using the relation: p = exp(-exp((a-x)/b)) ]][[cdf complement][Using the relation: q = -expm1(-exp((a-x)/b)) ]][[quantile][Using the relation: a - log(-log(p)) * b]][[quantile from the complement][Using the relation: a - log(-log1p(-q)) * b]][[mean][a + [@http://en.wikipedia.org/wiki/Euler-Mascheroni_constant Euler-Mascheroni-constant] * b]][[standard deviation][pi * b / sqrt(6)]][[mode][The same as the location parameter /a/.]][[skewness][12 * sqrt(6) * zeta(3) / pi[super 3] ]][[kurtosis][27 / 5]][[kurtosis excess][kurtosis - 3 or 12 / 5]]][endsect][/section:extreme_dist Extreme Value][/ extreme_value.qbk  Copyright 2006 John Maddock and Paul A. Bristow.  Distributed under the Boost Software License, Version 1.0.  (See accompanying file LICENSE_1_0.txt or copy at  http://www.boost.org/LICENSE_1_0.txt).]

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -