📄 exponential.qbk
字号:
[section:exp_dist Exponential Distribution]``#include <boost/math/distributions/exponential.hpp>`` template <class RealType = double, class ``__Policy`` = ``__policy_class`` > class exponential_distribution; typedef exponential_distribution<> exponential; template <class RealType, class ``__Policy``> class exponential_distribution { public: typedef RealType value_type; typedef Policy policy_type; exponential_distribution(RealType lambda = 1); RealType lambda()const; };The [@http://en.wikipedia.org/wiki/Exponential_distribution exponential distribution]is a [@http://en.wikipedia.org/wiki/Probability_distribution continuous probability distribution]with PDF:[equation exponential_dist_ref1]It is often used to model the time between independent events that happen at a constant average rate.The following graph shows how the distribution changes for differentvalues of the rate parameter lambda:[graph exponential_pdf][h4 Member Functions] exponential_distribution(RealType lambda = 1); Constructs an[@http://en.wikipedia.org/wiki/Exponential_distribution Exponential distribution]with parameter /lambda/.Lambda is defined as the reciprocal of the scale parameter.Requires lambda > 0, otherwise calls __domain_error. RealType lambda()const; Accessor function returns the lambda parameter of the distribution. [h4 Non-member Accessors]All the [link math_toolkit.dist.dist_ref.nmp usual non-member accessor functions]that are generic to all distributions are supported: __usual_accessors.The domain of the random variable is \[0, +[infin]\].[h4 Accuracy]The exponential distribution is implemented in terms of the standard library functions `exp`, `log`, `log1p` and `expm1`and as such should have very low error rates.[h4 Implementation]In the following table [lambda] is the parameter lambda of the distribution, /x/ is the random variate, /p/ is the probability and /q = 1-p/.[table[[Function][Implementation Notes]][[pdf][Using the relation: pdf = [lambda] * exp(-[lambda] * x) ]][[cdf][Using the relation: p = 1 - exp(-x * [lambda]) = -expm1(-x * [lambda]) ]][[cdf complement][Using the relation: q = exp(-x * [lambda]) ]][[quantile][Using the relation: x = -log(1-p) / [lambda] = -log1p(-p) / [lambda]]][[quantile from the complement][Using the relation: x = -log(q) / [lambda]]][[mean][1/[lambda]]][[standard deviation][1/[lambda]]][[mode][0]][[skewness][2]][[kurtosis][9]][[kurtosis excess][6]]][h4 references]* [@http://mathworld.wolfram.com/ExponentialDistribution.html Weisstein, Eric W. "Exponential Distribution." From MathWorld--A Wolfram Web Resource]* [@http://documents.wolfram.com/calccenter/Functions/ListsMatrices/Statistics/ExponentialDistribution.html Wolfram Mathematica calculator]* [@http://www.itl.nist.gov/div898/handbook/eda/section3/eda3667.htm NIST Exploratory Data Analysis]* [@http://en.wikipedia.org/wiki/Exponential_distribution Wikipedia Exponential distribution](See also the reference documentation for the related __extreme_distrib.)* [@http://www.worldscibooks.com/mathematics/p191.html Extreme Value Distributions, Theory and ApplicationsSamuel Kotz & Saralees Nadarajah]discuss the relationship of the types of extreme value distributions.[endsect][/section:exp_dist Exponential][/ exponential.qbk Copyright 2006 John Maddock and Paul A. Bristow. Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt).]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -