📄 nag_library.qbk
字号:
[section:nag_library Comparison with C, R, FORTRAN-style Free Functions]You are probably familiar with a statistics library that has free functions,for example the classic [@http://nag.com/numeric/CL/CLdescription.asp NAG C library]and matching [@http://nag.com/numeric/FL/FLdescription.asp NAG FORTRAN Library],[@http://office.microsoft.com/en-us/excel/HP052090051033.aspx Microsoft Excel BINOMDIST(number_s,trials,probability_s,cumulative)],[@http://www.r-project.org/ R], [@http://www.ptc.com/products/mathcad/mathcad14/mathcad_func_chart.htm MathCAD pbinom]and many others.If so, you may find 'Distributions as Objects' unfamiliar, if not alien.However, *do not panic*, both definition and usage are not really very different.A very simple example of generating the same values as the [@http://nag.com/numeric/CL/CLdescription.asp NAG C library] for the binomial distribution follows.(If you find slightly different values, the Boost C++ version, using double or better,is very likely to be the more accurate.Of course, accuracy is not usually a concern for most applications of this function).The [@http://www.nag.co.uk/numeric/cl/manual/pdf/G01/g01bjc.pdf NAG function specification] is void nag_binomial_dist(Integer n, double p, Integer k, double *plek, double *pgtk, double *peqk, NagError *fail)and is called g01bjc(n, p, k, &plek, &pgtk, &peqk, NAGERR_DEFAULT); The equivalent using this Boost C++ library is: using namespace boost::math; // Using declaration avoids very long names. binomial my_dist(4, 0.5); // c.f. NAG n = 4, p = 0.5 and values can be output thus: cout << my_dist.trials() << " " // Echo the NAG input n = 4 trials. << my_dist.success_fraction() << " " // Echo the NAG input p = 0.5 << cdf(my_dist, 2) << " " // NAG plek with k = 2 << cdf(complement(my_dist, 2)) << " " // NAG pgtk with k = 2 << pdf(my_dist, 2) << endl; // NAG peqk with k = 2`cdf(dist, k)` is equivalent to NAG library `plek`, lower tail probability of <= k`cdf(complement(dist, k))` is equivalent to NAG library `pgtk`, upper tail probability of > k`pdf(dist, k)` is equivalent to NAG library `peqk`, point probability of == kSee [@../../../example/binomial_example_nag.cpp binomial_example_nag.cpp] for details.[endsect] [/section:nag_library Comparison with C, R, FORTRAN-style Free Functions][/ Copyright 2006 John Maddock and Paul A. Bristow. Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt).]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -