📄 rayleigh.qbk
字号:
[section:rayleigh Rayleigh Distribution]``#include <boost/math/distributions/rayleigh.hpp>`` namespace boost{ namespace math{ template <class RealType = double, class ``__Policy`` = ``__policy_class`` > class rayleigh_distribution; typedef rayleigh_distribution<> rayleigh; template <class RealType, class ``__Policy``> class rayleigh_distribution { public: typedef RealType value_type; typedef Policy policy_type; // Construct: rayleigh_distribution(RealType sigma = 1) // Accessors: RealType sigma()const; }; }} // namespaces The [@http://en.wikipedia.org/wiki/Rayleigh_distribution Rayleigh distribution]is a continuous distribution with the [@http://en.wikipedia.org/wiki/Probability_density_function probability density function]:f(x; sigma) = x * exp(-x[super 2]/2 [sigma][super 2]) / [sigma][super 2]For sigma parameter [sigma][space] > 0, and x > 0.The Rayleigh distribution is often used where two orthogonal componentshave an absolute value,for example, wind velocity and direction may be combined to yield a wind speed,or real and imaginary components may have absolute values that are Rayleigh distributed.The following graph illustrates how the Probability density Function(pdf) varies with the shape parameter [sigma]:[graph rayleigh_pdf]and the Cumulative Distribution Function (cdf)[graph rayleigh_cdf][h4 Related distributions]The absolute value of two independent normal distributions X and Y, [radic] (X[super 2] + Y[super 2])is a Rayleigh distribution.The [@http://en.wikipedia.org/wiki/Chi_distribution Chi],[@http://en.wikipedia.org/wiki/Rice_distribution Rice]and [@http://en.wikipedia.org/wiki/Weibull_distribution Weibull] distributions are generalizations of the[@http://en.wikipedia.org/wiki/Rayleigh_distribution Rayleigh distribution]. [h4 Member Functions] rayleigh_distribution(RealType sigma = 1); Constructs a [@http://en.wikipedia.org/wiki/Rayleigh_distribution Rayleigh distribution] with [sigma] /sigma/.Requires that the [sigma] parameter is greater than zero, otherwise calls __domain_error. RealType sigma()const; Returns the /sigma/ parameter of this distribution. [h4 Non-member Accessors]All the [link math_toolkit.dist.dist_ref.nmp usual non-member accessor functions] that are generic to alldistributions are supported: __usual_accessors.The domain of the random variable is \[0, max_value\].[h4 Accuracy]The Rayleigh distribution is implemented in terms of the standard library `sqrt` and `exp` and as such should have very low error rates.Some constants such as skewness and kurtosis were calculated usingNTL RR type with 150-bit accuracy, about 50 decimal digits.[h4 Implementation]In the following table [sigma][space] is the sigma parameter of the distribution, /x/ is the random variate, /p/ is the probability and /q = 1-p/.[table[[Function][Implementation Notes]][[pdf][Using the relation: pdf = x * exp(-x[super 2])/2 [sigma][super 2] ]][[cdf][Using the relation: p = 1 - exp(-x[super 2]/2) [sigma][super 2][space] = -__expm1(-x[super 2]/2) [sigma][super 2]]][[cdf complement][Using the relation: q = exp(-x[super 2]/ 2) * [sigma][super 2] ]][[quantile][Using the relation: x = sqrt(-2 * [sigma] [super 2]) * log(1 - p)) = sqrt(-2 * [sigma] [super 2]) * __log1p(-p))]][[quantile from the complement][Using the relation: x = sqrt(-2 * [sigma] [super 2]) * log(q)) ]][[mean][[sigma] * sqrt([pi]/2) ]][[variance][[sigma][super 2] * (4 - [pi]/2) ]][[mode][[sigma] ]][[skewness][Constant from [@http://mathworld.wolfram.com/RayleighDistribution.html Weisstein, Eric W. "Weibull Distribution." From MathWorld--A Wolfram Web Resource.] ]][[kurtosis][Constant from [@http://mathworld.wolfram.com/RayleighDistribution.html Weisstein, Eric W. "Weibull Distribution." From MathWorld--A Wolfram Web Resource.] ]][[kurtosis excess][Constant from [@http://mathworld.wolfram.com/RayleighDistribution.html Weisstein, Eric W. "Weibull Distribution." From MathWorld--A Wolfram Web Resource.] ]]][h4 References]* [@http://en.wikipedia.org/wiki/Rayleigh_distribution ]* [@http://mathworld.wolfram.com/RayleighDistribution.html Weisstein, Eric W. "Rayleigh Distribution." From MathWorld--A Wolfram Web Resource.][endsect][/section:Rayleigh Rayleigh][/ Copyright 2006 John Maddock and Paul A. Bristow. Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt).]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -