⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 nc_t.qbk

📁 Boost provides free peer-reviewed portable C++ source libraries. We emphasize libraries that work
💻 QBK
字号:
[section:nc_t_dist Noncentral T Distribution]``#include <boost/math/distributions/non_central_t.hpp>``   namespace boost{ namespace math{    template <class RealType = double,              class ``__Policy``   = ``__policy_class`` >   class non_central_t_distribution;   typedef non_central_t_distribution<> non_central_t;   template <class RealType, class ``__Policy``>   class non_central_t_distribution   {   public:      typedef RealType  value_type;      typedef Policy    policy_type;      // Constructor:      non_central_t_distribution(RealType v, RealType delta);      // Accessor to degrees_of_freedom parameter v:      RealType degrees_of_freedom()const;      // Accessor to non-centrality parameter lambda:      RealType non_centrality()const;   };      }} // namespaces   The noncentral T distribution is a generalization of the __students_t_distrib.Let X have a normal distribution with mean [delta] and variance 1, and let [nu] S[super 2] havea chi-squared distribution with degrees of freedom [nu]. Assume that X and S[super 2] are independent. Thedistribution of t[sub [nu]]([delta])=X/S is called a noncentral t distribution with degrees of freedom [nu] and noncentralityparameter [delta].This gives the following PDF:[equation nc_t_ref1]where [sub 1]F[sub 1](a;b;x) is a confluent hypergeometric function.The following graph illustrates how the distribution changesfor different values of [delta]:[graph nc_t_pdf][h4 Member Functions]      non_central_t_distribution(RealType v, RealType lambda);      Constructs a non-central t distribution with degrees of freedomparameter /v/ and non-centrality parameter /delta/.Requires v > 0 and finite delta, otherwise calls __domain_error.      RealType degrees_of_freedom()const;      Returns the parameter /v/ from which this object was constructed.      RealType non_centrality()const;      Returns the non-centrality parameter /delta/ from which this object was constructed.[h4 Non-member Accessors]All the [link math_toolkit.dist.dist_ref.nmp usual non-member accessor functions]that are generic to all distributions are supported: __usual_accessors.The domain of the random variable is \[-[infin], +[infin]\].[h4 Accuracy]The following table shows the peak errors(in units of [@http://en.wikipedia.org/wiki/Machine_epsilon epsilon]) found on various platforms with various floating-point types.Unless otherwise specified, any floating-point type that is narrowerthan the one shown will have __zero_error.[table Errors In CDF of the Noncentral T Distribution[[Significand Size] [Platform and Compiler] [[nu],[delta] < 600]][[53] [Win32, Visual C++ 8] [Peak=120 Mean=26 ] ][[64] [RedHat Linux IA32, gcc-4.1.1] [Peak=121 Mean=26] ][[64] [Redhat Linux IA64, gcc-3.4.4] [Peak=122 Mean=25] ][[113] [HPUX IA64, aCC A.06.06] [Peak=115 Mean=24] ]][caution The complexity of the current algorithm is dependent upon[delta][super 2]: consequently the time taken to evaluate the CDFincreases rapidly for [delta] > 500, likewise the accuracy decreasesrapidly for very large [delta].]Accuracy for the quantile and PDF functions should be broadly similar,note however that the /mode/ is determined numerically and can notin principal be more accurate than the square root of machine epsilon.[h4 Tests]There are two sets of tests of this distribution: basic sanity checkscompare this implementation to the test values given in"Computing discrete mixtures of continuousdistributions: noncentral chisquare, noncentral tand the distribution of the square of the samplemultiple correlation coefficient."Denise Benton, K. Krishnamoorthy, Computational Statistics & Data Analysis 43 (2003) 249-267.While accuracy checks use test data computed with thisimplementation and arbitary precision interval arithmetic:this test data is believed to be accurate to at least 50decimal places.[h4 Implementation]The CDF is computed using a modification of the methoddescribed in"Computing discrete mixtures of continuousdistributions: noncentral chisquare, noncentral tand the distribution of the square of the samplemultiple correlation coefficient."Denise Benton, K. Krishnamoorthy, Computational Statistics & Data Analysis 43 (2003) 249-267.This uses the following formula for the CDF:[equation nc_t_ref2]Where I[sub x](a,b) is the incomplete beta function, and[Phi](x) is the normal CDF at x.Iteration starts at the largest of the Poisson weighting terms(at i = [delta][super 2] / 2) and then proceeds in both directionsas per Benton and Krishnamoorthy's paper.Alternatively, by considering what happens when t = [infin], we havex = 1, and therefore I[sub x](a,b) = 1 and:[equation nc_t_ref3]From this we can easily show that:[equation nc_t_ref4]and therefore we have a means to compute either the probability or itscomplement directly without the risk of cancellation error.  Thecrossover criterion for choosing whether to calculate the CDF orit's complement is the same as for the __non_central_beta_distrib.The PDF can be computed by a very similar method using:[equation nc_t_ref5]Where I[sub x][super '](a,b) is the derivative of the incomplete beta function.The quantile is calculated via the usual [link math_toolkit.toolkit.internals1.roots2derivative-free root-finding techniques],with the initial guess taken as the quantile of a normal approximationto the noncentral T.There is no closed form for the mode, so this is computed viafunctional maximisation of the PDF.The remaining functions (mean, variance etc) are implementedusing the formulas given in Weisstein, Eric W. "Noncentral Student's t-Distribution." From MathWorld--A Wolfram Web Resource. [@http://mathworld.wolfram.com/NoncentralStudentst-Distribution.htmlhttp://mathworld.wolfram.com/NoncentralStudentst-Distribution.html]and in the [@http://reference.wolfram.com/mathematica/ref/NoncentralStudentTDistribution.html Mathematica documentation].Some analytic properties of noncentral distributions(particularly unimodality, and monotonicity of their modes)are surveyed and summarized by:Andrea van Aubel & Wolfgang Gawronski, Applied Mathematics and Computation, 141 (2003) 3-12.[endsect] [/section:nc_t_dist][/ nc_t.qbk  Copyright 2008 John Maddock and Paul A. Bristow.  Distributed under the Boost Software License, Version 1.0.  (See accompanying file LICENSE_1_0.txt or copy at  http://www.boost.org/LICENSE_1_0.txt).]

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -