📄 sinc.qbk
字号:
[/ math.qbk Copyright 2006 Hubert Holin and John Maddock. Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt).][section:sinc Sinus Cardinal and Hyperbolic Sinus Cardinal Functions][section:sinc_overview Sinus Cardinal and Hyperbolic Sinus Cardinal Functions Overview]The [@http://mathworld.wolfram.com/SincFunction.html Sinus Cardinal family of functions](indexed by the family of indices [^a > 0]) is defined by [equation special_functions_blurb20]it sees heavy use in signal processing tasks.By analogy, the [@http://mathworld.wolfram.com/SinhcFunction.htm Hyperbolic Sinus Cardinal]family of functions (also indexed by the family of indices [^a > 0]) is defined by [equation special_functions_blurb22]These two families of functions are composed of entire functions.These functions (__sinc_pi and __sinhc_pi) are needed by[@http://www.boost.org/libs/math/quaternion/quaternion.html our implementation]of [@http://mathworld.wolfram.com/Quaternion.html quaternions]and [@http://mathworld.wolfram.com/Octonion.html octonions].[: ['[*Sinus Cardinal of index pi (purple) and Hyperbolic Sinus Cardinal of index pi (red) on R]]][: [$../graphs/sinc_pi_and_sinhc_pi_on_r.png]][endsect][section sinc_pi]``#include <boost/math/special_functions/sinc.hpp>`` template<class T> ``__sf_result`` sinc_pi(const T x); template<class T, class ``__Policy``> ``__sf_result`` sinc_pi(const T x, const ``__Policy``&); template<class T, template<typename> class U> U<T> sinc_pi(const U<T> x); template<class T, template<typename> class U, class ``__Policy``> U<T> sinc_pi(const U<T> x, const ``__Policy``&);Computes [link math_toolkit.special.sinc.sinc_overview the Sinus Cardinal] of x: sinc_pi(x) = sin(x) / xThe second form is for complex numbers, quaternions, octonions etc. Taylor series are used at the origin to ensure accuracy.[graph sinc_pi][optional_policy][endsect][section sinhc_pi]``#include <boost/math/special_functions/sinhc.hpp>`` template<class T> ``__sf_result`` sinhc_pi(const T x); template<class T, class ``__Policy``> ``__sf_result`` sinhc_pi(const T x, const ``__Policy``&); template<typename T, template<typename> class U> U<T> sinhc_pi(const U<T> x); template<class T, template<typename> class U, class ``__Policy``> U<T> sinhc_pi(const U<T> x, const ``__Policy``&);Computes http://mathworld.wolfram.com/SinhcFunction.html[link math_toolkit.special.sinc.sinc_overviewthe Hyperbolic Sinus Cardinal] of x: sinhc_pi(x) = sinh(x) / xThe second form is for complex numbers, quaternions, octonions etc. Taylor series are used at the origin to ensure accuracy.The return type of the first form is computed using the __arg_pomotion_ruleswhen T is an integer type.[optional_policy][graph sinhc_pi][endsect][endsect]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -